121 research outputs found

    CL-XABSA: Contrastive Learning for Cross-lingual Aspect-based Sentiment Analysis

    Full text link
    As an extensive research in the field of Natural language processing (NLP), aspect-based sentiment analysis (ABSA) is the task of predicting the sentiment expressed in a text relative to the corresponding aspect. Unfortunately, most languages lack of sufficient annotation resources, thus more and more recent researchers focus on cross-lingual aspect-based sentiment analysis (XABSA). However, most recent researches only concentrate on cross-lingual data alignment instead of model alignment. To this end, we propose a novel framework, CL-XABSA: Contrastive Learning for Cross-lingual Aspect-Based Sentiment Analysis. Specifically, we design two contrastive strategies, token level contrastive learning of token embeddings (TL-CTE) and sentiment level contrastive learning of token embeddings (SL-CTE), to regularize the semantic space of source and target language to be more uniform. Since our framework can receive datasets in multiple languages during training, our framework can be adapted not only for XABSA task, but also for multilingual aspect-based sentiment analysis (MABSA). To further improve the performance of our model, we perform knowledge distillation technology leveraging data from unlabeled target language. In the distillation XABSA task, we further explore the comparative effectiveness of different data (source dataset, translated dataset, and code-switched dataset). The results demonstrate that the proposed method has a certain improvement in the three tasks of XABSA, distillation XABSA and MABSA. For reproducibility, our code for this paper is available at https://github.com/GKLMIP/CL-XABSA

    Self-supervised learning in natural language processing

    Get PDF
    Most natural language processing (NLP) learning algorithms require labeled data. While this is given for a select number of (mostly English) tasks, the availability of labeled data is sparse or non-existent for the vast majority of use-cases. To alleviate this, unsupervised learning and a wide array of data augmentation techniques have been developed (Hedderich et al., 2021a). However, unsupervised learning often requires massive amounts of unlabeled data and also fails to perform in difficult (low-resource) data settings, i.e., if there is an increased distance between the source and target data distributions (Kim et al., 2020). This distributional distance can be the case if there is a domain drift or large linguistic distance between the source and target data. Unsupervised learning in itself does not exploit the highly informative (labeled) supervisory signals hidden in unlabeled data. In this dissertation, we show that by combining the right unsupervised auxiliary task (e.g., sentence pair extraction) with an appropriate primary task (e.g., machine translation), self-supervised learning can exploit these hidden supervisory signals more efficiently than purely unsupervised approaches, while functioning on less labeled data than supervised approaches. Our self-supervised learning approach can be used to learn NLP tasks in an efficient manner, even when the amount of training data is sparse or the data comes with strong differences in its underlying distribution, e.g., stemming from unrelated languages. For our general approach, we applied unsupervised learning as an auxiliary task to learn a supervised primary task. Concretely, we have focused on the auxiliary task of sentence pair extraction for sequence-to-sequence primary tasks (i.e., machine translation and style transfer) as well as language modeling, clustering, subspace learning and knowledge integration for primary classification tasks (i.e., hate speech detection and sentiment analysis). For sequence-to-sequence tasks, we show that self-supervised neural machine translation (NMT) achieves competitive results on high-resource language pairs in comparison to unsupervised NMT while requiring less data. Further combining self-supervised NMT with unsupervised NMT-inspired augmentation techniques makes the learning of low-resource (similar, distant and unrelated) language pairs possible. Further, using our self-supervised approach, we show how style transfer can be learned without the need for parallel data, generating stylistic rephrasings of highest overall performance on all tested tasks. For sequence-to-label tasks, we underline the benefit of auxiliary task-based augmentation over primary task augmentation. An auxiliary task that showed to be especially beneficial to the primary task performance was subspace learning, which led to impressive gains in (cross-lingual) zero-shot classification performance on similar or distant target tasks, also on similar, distant and unrelated languages.Die meisten Lernalgorithmen der Computerlingistik (CL) benötigen gelabelte Daten. Diese sind zwar für eine Auswahl an (hautpsächlich Englischen) Aufgaben verfügbar, für den Großteil aller Anwendungsfälle sind gelabelte Daten jedoch nur spärrlich bis gar nicht vorhanden. Um dem gegenzusteuern, wurde eine große Auswahl an Techniken entwickelt, welche sich das unüberwachte Lernen oder Datenaugmentierung zu eigen machen (Hedderich et al., 2021a). Unüberwachtes Lernen benötigt jedoch massive Mengen an ungelabelten Daten und versagt, wenn es mit schwierigen (resourcenarmen) Datensituationen konfrontiert wird, d.h. wenn eine größere Distanz zwischen der Quellen- und Zieldatendistributionen vorhanden ist (Kim et al., 2020). Eine distributionelle Distanz kann zum Beispiel der Fall sein, wenn ein Domänenunterschied oder eine größere sprachliche Distanz zwischen der Quellenund Zieldaten besteht. Unüberwachtes Lernen selbst nutzt die hochinformativen (gelabelten) Überwachungssignale, welche sich in ungelabelte Daten verstecken, nicht aus. In dieser Dissertation zeigen wir, dass selbstüberwachtes Lernen, durch die Kombination der richtigen unüberwachten Hilfsaufgabe (z.B. Satzpaarextraktion) mit einer passenden Hauptaufgabe (z.B. maschinelle Übersetzung), diese versteckten Überwachsungssignale effizienter ausnutzen kann als pure unüberwachte Lernalgorithmen, und dabei auch noch weniger gelabelte Daten benötigen als überwachte Lernalgorithmen. Unser selbstüberwachter Lernansatz erlaubt es uns, CL Aufgaben effizient zu lernen, selbst wenn die Trainingsdatenmenge spärrlich ist oder die Daten mit starken distributionellen Differenzen einher gehen, z.B. weil die Daten von zwei nicht verwandten Sprachen stammen. Im Generellen haben wir unüberwachtes Lernen als Hilfsaufgabe angewandt um eine überwachte Hauptaufgabe zu erlernen. Konkret haben wir uns auf Satzpaarextraktion als Hilfsaufgabe für Sequenz-zu-Sequenz Hauptaufgaben (z.B. maschinelle Übersetzung und Stilübertragung) konzentriert sowohl als auch Sprachmodelierung, Clustern, Teilraumlernen und Wissensintegration zum erlernen von Klassifikationsaufgaben (z.B. Hassredenidentifikation und Sentimentanalyse). Für Sequenz-zu-Sequenz Aufgaben zeigen wir, dass selbstüberwachte maschinelle Übersetzung (MÜ) im Vergleich zur unüberwachten MÜ wettbewerbsfähige Ergebnisse auf resourcenreichen Sprachpaaren erreicht und währenddessen weniger Daten zum Lernen benötigt. Wenn selbstüberwachte MÜ mit Augmentationstechniken, inspiriert durch unüberwachte MÜ, kombiniert wird, wird auch das Lernen von resourcenarmen (ähnlichen, entfernt verwandten und nicht verwandten) Sprachpaaren möglich. Außerdem zeigen wir, wie unser selbsüberwachter Lernansatz es ermöglicht Stilübertragung ohne parallele Daten zu erlernen und dabei stylistische Umformulierungen von höchster Qualität auf allen geprüften Aufgaben zu erlangen. Für Sequenz-zu-Label Aufgaben unterstreichen wir den Vorteil, welchen hilfsaufgabenseitige Augmentierung über hauptaufgabenseitige Augmentierung hat. Eine Hilfsaufgabe welche sich als besonders hilfreich für die Qualität der Hauptaufgabe herausstellte ist das Teilraumlernen, welches zu beeindruckenden Leistungssteigerungen für (sprachübergreifende) zero-shot Klassifikation ähnlicher und entfernter Zielaufgaben (auch für ähnliche, entfernt verwandte und nicht verwandte Sprachen) führt

    Lingüística cognitiva y su aplicación en la enseñanza de español/L2: hacia un aprendizaje más significativo de la expresión de la emoción

    Get PDF
    The present dissertation, within the field of Cognitive Linguistics applied to Spanish/L2 teaching, presents a collection of 13 published and under-review papers. Among the motivations that have guided this work is the lack of experimental research within the field of CL and Spanish/L2 instruction that presents empirical evidence of the benefits of bringing these two disciplines together. Based on a prior cognitive and contrastive analysis of frequent constructions (i.e., psych verbs, metaphorical expressions with ponerse and tocar, and ironic utterances ), a series of empirical studies are conducted with Spanish/L2 learners at different proficiency levels, from beginner to advanced. The linguistic constructions under study have several aspects in common. First, they are used to express emotions; second, their acquisition in an instructional setting has been considered a real challenge; and third, their inclusion in the curriculum has been heretofore rather neglected. A wide variety of corpora has been used for the analysis of the target constructions: from textbooks, which are the material to which learners are most directly exposed, to corpora from Sketch Engine, Twitter, and interviews with native speakers, among others. Based on findings and in search for further empirical validation, an innovative CL pedagogy has been designed and further implemented at different levels with a large number of students at a North American university. As a novelty, L2 learner performance has been evaluated via assessment tests that, in coherence with the theoretical approach adopted and in line with its cognitive-based pedagogical application, have been carefully designed. Overall, results from the empirical studies examining the effects of a CL-based methodology for both pedagogical material and assessment test design yield statistically positive effects for the cognitive group in comprehension and production tasks at each proficiency level. These promising findings reveal the productivity of this method, as the learning of the target forms scaffolds and, as a result, learners’ communicative, metaphorical, and ironic competences are enhanced. The inclusion of a broader range of psych-verbs at lower levels, of change -of-state and tactile constructions through metaphor awareness, and of verbal ironic cues in the Spanish/L2 curriculum along with their treatment from a CL perspective are advocated. Such an approach should be put into practice in the day-to-day L2 classroom experience and in empirical research looking at the effects of a CL pedagogy. The positive findings in this research highlight the importance of embracing a CL-inspired method for Spanish/L2 teaching and assessing. They also call for a methodological change in the type of assessment. Such transformation requires the learning of Spanish –a language at great expansion– to build from linguistic assumptions from which it is possible to operate. Furthermore, the empirical studies here reported contribute to the small but growing body of literature that researches L2s other than English

    A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

    Full text link
    Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.Comment: Preprint under review, 58 page

    The Skipped Beat: A Study of Sociopragmatic Understanding in LLMs for 64 Languages

    Full text link
    Instruction tuned large language models (LLMs), such as ChatGPT, demonstrate remarkable performance in a wide range of tasks. Despite numerous recent studies that examine the performance of instruction-tuned LLMs on various NLP benchmarks, there remains a lack of comprehensive investigation into their ability to understand cross-lingual sociopragmatic meaning (SM), i.e., meaning embedded within social and interactive contexts. This deficiency arises partly from SM not being adequately represented in any of the existing benchmarks. To address this gap, we present SPARROW, an extensive multilingual benchmark specifically designed for SM understanding. SPARROW comprises 169 datasets covering 13 task types across six primary categories (e.g., anti-social language detection, emotion recognition). SPARROW datasets encompass 64 different languages originating from 12 language families representing 16 writing scripts. We evaluate the performance of various multilingual pretrained language models (e.g., mT5) and instruction-tuned LLMs (e.g., BLOOMZ, ChatGPT) on SPARROW through fine-tuning, zero-shot, and/or few-shot learning. Our comprehensive analysis reveals that existing open-source instruction tuned LLMs still struggle to understand SM across various languages, performing close to a random baseline in some cases. We also find that although ChatGPT outperforms many LLMs, it still falls behind task-specific finetuned models with a gap of 12.19 SPARROW score. Our benchmark is available at: https://github.com/UBC-NLP/SPARROWComment: Accepted by EMNLP 2023 Main conferenc

    Integrating Distributional, Compositional, and Relational Approaches to Neural Word Representations

    Get PDF
    When the field of natural language processing (NLP) entered the era of deep neural networks, the task of representing basic units of language, an inherently sparse and symbolic medium, using low-dimensional dense real-valued vectors, or embeddings, became crucial. The dominant technique to perform this task has for years been to segment input text sequences into space-delimited words, for which embeddings are trained over a large corpus by means of leveraging distributional information: a word is reducible to the set of contexts it appears in. This approach is powerful but imperfect; words not seen during the embedding learning phase, known as out-of-vocabulary words (OOVs), emerge in any plausible application where embeddings are used. One approach applied in order to combat this and other shortcomings is the incorporation of compositional information obtained from the surface form of words, enabling the representation of morphological regularities and increasing robustness to typographical errors. Another approach leverages word-sense information and relations curated in large semantic graph resources, offering a supervised signal for embedding space structure and improving representations for domain-specific rare words. In this dissertation, I offer several analyses and remedies for the OOV problem based on the utilization of character-level compositional information in multiple languages and the structure of semantic knowledge in English. In addition, I provide two novel datasets for the continued exploration of vocabulary expansion in English: one with a taxonomic emphasis on novel word formation, and the other generated by a real-world data-driven use case in the entity graph domain. Finally, recognizing the recent shift in NLP towards contextualized representations of subword tokens, I describe the form in which the OOV problem still appears in these methods, and apply an integrative compositional model to address it.Ph.D
    corecore