10,239 research outputs found

    The Relations Between Pedagogical and Scientific Explanations of Algorithms: Case Studies from the French Administration

    Get PDF
    The opacity of some recent Machine Learning (ML) techniques have raised fundamental questions on their explainability, and created a whole domain dedicated to Explainable Artificial Intelligence (XAI). However, most of the literature has been dedicated to explainability as a scientific problem dealt with typical methods of computer science, from statistics to UX. In this paper, we focus on explainability as a pedagogical problem emerging from the interaction between lay users and complex technological systems. We defend an empirical methodology based on field work, which should go beyond the in-vitro analysis of UX to examine in-vivo problems emerging in the field. Our methodology is also comparative, as it chooses to steer away from the almost exclusive focus on ML to compare its challenges with those faced by more vintage algorithms. Finally, it is also philosophical, as we defend the relevance of the philosophical literature to define the epistemic desiderata of a good explanation. This study was conducted in collaboration with Etalab, a Task Force of the French Prime Minister in charge of Open Data & Open Government Policies, dealing in particular with the enforcement of the right to an explanation. In order to illustrate and refine our methodology before going up to scale, we conduct a preliminary work of case studies on the main different types of algorithms used by the French administration: computation, matching algorithms and ML. We study the merits and drawbacks of a recent approach to explanation, which we baptize input-output black box reasoning or BBR for short. We begin by presenting a conceptual framework including the distinctions necessary to a study of pedagogical explainability. We proceed to algorithmic case studies, and draw model-specific and model-agnostic lessons and conjectures

    The phonetics of second language learning and bilingualism

    Get PDF
    This chapter provides an overview of major theories and findings in the field of second language (L2) phonetics and phonology. Four main conceptual frameworks are discussed and compared: the Perceptual Assimilation Model-L2, the Native Language Magnet Theory, the Automatic Selection Perception Model, and the Speech Learning Model. These frameworks differ in terms of their empirical focus, including the type of learner (e.g., beginner vs. advanced) and target modality (e.g., perception vs. production), and in terms of their theoretical assumptions, such as the basic unit or window of analysis that is relevant (e.g., articulatory gestures, position-specific allophones). Despite the divergences among these theories, three recurring themes emerge from the literature reviewed. First, the learning of a target L2 structure (segment, prosodic pattern, etc.) is influenced by phonetic and/or phonological similarity to structures in the native language (L1). In particular, L1-L2 similarity exists at multiple levels and does not necessarily benefit L2 outcomes. Second, the role played by certain factors, such as acoustic phonetic similarity between close L1 and L2 sounds, changes over the course of learning, such that advanced learners may differ from novice learners with respect to the effect of a specific variable on observed L2 behavior. Third, the connection between L2 perception and production (insofar as the two are hypothesized to be linked) differs significantly from the perception-production links observed in L1 acquisition. In service of elucidating the predictive differences among these theories, this contribution discusses studies that have investigated L2 perception and/or production primarily at a segmental level. In addition to summarizing the areas in which there is broad consensus, the chapter points out a number of questions which remain a source of debate in the field today.https://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHAccepted manuscriptAccepted manuscrip

    Teaching an Active Learner with Contrastive Examples

    Get PDF
    We study the problem of active learning with the added twist that the learner is assisted by a helpful teacher. We consider the following natural interaction protocol: At each round, the learner proposes a query asking for the label of an instance xqx^q, the teacher provides the requested label {xq,yq}\{x^q, y^q\} along with explanatory information to guide the learning process. In this paper, we view this information in the form of an additional contrastive example ({xc,yc}\{x^c, y^c\}) where xcx^c is picked from a set constrained by xqx^q (e.g., dissimilar instances with the same label). Our focus is to design a teaching algorithm that can provide an informative sequence of contrastive examples to the learner to speed up the learning process. We show that this leads to a challenging sequence optimization problem where the algorithm's choices at a given round depend on the history of interactions. We investigate an efficient teaching algorithm that adaptively picks these contrastive examples. We derive strong performance guarantees for our algorithm based on two problem-dependent parameters and further show that for specific types of active learners (e.g., a generalized binary search learner), the proposed teaching algorithm exhibits strong approximation guarantees. Finally, we illustrate our bounds and demonstrate the effectiveness of our teaching framework via two numerical case studies.Comment: Fix the illustrative exampl

    Semantic features and Prototype Theory in English lexicology

    Get PDF
    • …
    corecore