1,964 research outputs found

    Bounds for Visual Cryptography Schemes

    Get PDF
    In this paper, we investigate the best pixel expansion of the various models of visual cryptography schemes. In this regard, we consider visual cryptography schemes introduced by Tzeng and Hu [13]. In such a model, only minimal qualified sets can recover the secret image and that the recovered secret image can be darker or lighter than the background. Blundo et al. [4] introduced a lower bound for the best pixel expansion of this scheme in terms of minimal qualified sets. We present another lower bound for the best pixel expansion of the scheme. As a corollary, we introduce a lower bound, based on an induced matching of hypergraph of qualified sets, for the best pixel expansion of the aforementioned model and the traditional model of visual cryptography realized by basis matrices. Finally, we study access structures based on graphs and we present an upper bound for the smallest pixel expansion in terms of strong chromatic index

    On Real-valued Visual Cryptographic Basis Matrices

    Get PDF
    Visual cryptography (VC) encodes an image into noise-like shares, which can be stacked to reveal a reduced quality version of the original. The problem with encrypting colour images is that they must undergo heavy pre-processing to reduce them to binary, entailing significant quality loss. This paper proposes VC that works directly on intermediate grayscale values per colour channel and demonstrates real-valued basis matrices for this purpose. The resulting stacked shares produce a clearer reconstruction than in binary VC, and to the best of the authors’ knowledge, is the first method posing no restrictions on colour values while maintaining the ability to decrypt with human vision. Grayscale and colour images of differing entropies are encrypted using fuzzy OR and XOR, and their PSNR and structural similarities are compared with binary VC to demonstrate improved quality. It is compared with previous research and its advantages highlighted, notably in high quality reconstructions with minimal processing

    Bit Slicng based Visual Cryptography On Gray Scale ImageÂ

    Get PDF
    Data transmission through online is become mandatory in recent ages. No one can avoid data transmission over internet. But sensitivity of the data to be considered while transmits over internet. Internet is public medium where everyone has equal right to do their activities. Like in general public, internet also having malicious users and their main activity is deployment of attack. These attacks are of many types such as hacking, tampering and eavesdropping etc. Efficient data hiding techniques are required to with stand these attacks or to escape from these attacks. Visual Cryptography is one of such techniques to hide multimedia data in other multimedia data such as images, audio files or video files. In the proposed system secret image is partitioned or divided into shares based on the bits. These shares are then covered with given cover images then these covered shares are distributed to ‘n’ participants. To recover the secret all those participants are required. The proposed approach followed a novel method of bit slicing on gray scale images. So at the time of recover secret image cant’ be visible with same intensity or resolution as that of original image. For this purpose four secret keys are used. Simulation results shows that when compared to existing schemes , proposed approach can hide the image under cover images in efficient way as well as recovering of secret also lightweight and resilience to attacks

    Two Step Share Visual Cryptography Algorithm for Secure Visual Sharing

    Get PDF
    This paper re - examines the problem of visual secret sharing for general access structures by using visual cryptograms of random grids (VCRG). Given a binary or color secret image shared by a set of n participants with a strong access structure, we devise t wo effective algorithms to produce a set of VCRG so that the members in each qualified set can reconstruct the secret image by superimposing their sh ares, while those in any forbidden set cannot. The basic 2 out of 2 visual cryptography model consists of a secret message encoded into two transparencies, one transparency representing the cipher text and the other acting as a secret key. Both transparencies appear to be random dots when inspected individually and provide no information about the original clea r text. However, by carefully aligning the transparencies, the original secret message is reproduced. The actual decoding is accomplished by the human visual system. Our algorithms do not require any extr a pixel expansion, which is indispensable and grows exponentially as n increases in conventional visual cryptographic schemes

    Optimal Colored Threshold Visual Cryptography Schemes

    Get PDF
    Visual cryptography schemes allow the encoding of a secret image into n shares which are distributed to the participants. The shares are such that only qualified subsets of participants can visually recover the secret image. Usually the secret image consist of black and white pixels. In colored threshold visual cryptography schemes the secret image is composed of pixels taken from a given set of c colors. The pixels expansion and the contrast of a scheme are two measures of the goodness of the scheme. In this paper, we study c-color (k,n)-threshold visual cryptography schemes and provide a characterization of contrast-optimal schemes. More specifically we prove that there exists a contrast-optimal scheme that is a member of a special set of schemes, which we call canonical schemes, and that satisfy strong symmetry properties. Then we use canonical schemes to provide a constructive proof of optimality, with respect to the pixel expansion, of c-color (n,n)-threshold visual cryptography schemes. Finally, we provide constructions of c-color (2,n)-threshold schemes whose pixels expansion improves on previously proposed schemes

    A Reversible Steganography Scheme of Secret Image Sharing Based on Cellular Automata and Least Significant Bits Construction

    Get PDF
    Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity
    • …
    corecore