1,671 research outputs found

    Systems Biology of Protein Secretion in Human Cells: Multi-omics Analysis and Modeling of the Protein Secretion Process in Human Cells and its Application.

    Get PDF
    Since the emergence of modern biotechnology, the production of recombinant pharmaceutical proteins has been an expanding field with high demand from industry. Pharmaceutical proteins have constituted the majority of top-selling drugs in the pharma industry during recent years. Many of these proteins require post-translational modifications and are therefore produced using mammalian cells such as Chinese Hamster Ovary cells. Despite frequent improvements in developing efficient cell factories for producing recombinant proteins, the natural complexity of the protein secretion process still poses serious challenges for the production of some proteins at the desired quantity and accepted quality. These challenges have been intensified by the growing demands of the pharma industry to produce novel products with greater structural complexity,\ua0\ua0as well as increasing expectations from regulatory authorities in the form of new quality control criteria to guarantee product safety.This thesis focuses on different aspects of the protein secretion process, including its engineering for cell factory development and analysis in diseases associated with its deregulation. A major part of this thesis involved the use of HEK293 cells as a human model cell-line for investigating the protein secretion process by generating different types of omics data and developing a computational model of the human protein secretion pathway. We compared the transcriptomic profile of cell lines producing erythropoietin (EPO; as a model secretory protein) at different rates to identify key genes that potentially contributed to higher rates of protein secretion. Moreover, by performing a transcriptomic comparison of cells producing green fluorescent protein (GFP; as a model non-secretory protein) with EPO producers, we captured differences that specifically relate to secretory protein production. We sought to further investigate the factors contributing to increased recombinant protein production by analyzing additional omic layers such as proteomics and metabolomics in cells that exhibited different rates of EPO production. Moreover, we developed a toolbox (HumanSec) to extend the reference human genome-scale metabolic model (Human1) to encompass protein-specific reactions for each secretory protein detected in our proteomics dataset. By generating cell-line specific protein secretion models and constraining the models using metabolomics data, we could predict the top host cell proteins (HCPs) that compete with EPO for metabolic and energetic resources.\ua0Finally,\ua0based on the detected patterns of changes in our multi-omics investigations combined with a protein secretion sensitivity analysis using the metabolic model, we identified a list of genes and pathways that potentially play a key role in recombinant protein production and could serve as promising candidates for targeted cell factory design.In another part of the thesis, we studied the link between the expression profiles of genes involved in the protein secretory pathway (PSP) and various hallmarks of cancer. By\ua0implementing a dual approach involving differential expression analysis and eight different machine learning algorithms, we investigated the expression changes in secretory pathway components across different cancer types to identify PSP genes whose expression was associated with tumor characteristics. We demonstrated that a combined machine learning and differential expression approach have a complementary nature and could highlight key PSP components relevant to features of tumor pathophysiology that may constitute potential therapeutic targets

    dagLogo: An R/Bioconductor package for identifying and visualizing differential amino acid group usage in proteomics data

    Get PDF
    Sequence logos have been widely used as graphical representations of conserved nucleic acid and protein motifs. Due to the complexity of the amino acid (AA) alphabet, rich post-translational modification, and diverse subcellular localization of proteins, few versatile tools are available for effective identification and visualization of protein motifs. In addition, various reduced AA alphabets based on physicochemical, structural, or functional properties have been valuable in the study of protein alignment, folding, structure prediction, and evolution. However, there is lack of tools for applying reduced AA alphabets to the identification and visualization of statistically significant motifs. To fill this gap, we developed an R/Bioconductor package dagLogo, which has several advantages over existing tools. First, dagLogo allows various formats for input sets and provides comprehensive options to build optimal background models. It implements different reduced AA alphabets to group AAs of similar properties. Furthermore, dagLogo provides statistical and visual solutions for differential AA (or AA group) usage analysis of both large and small data sets. Case studies showed that dagLogo can better identify and visualize conserved protein sequence patterns from different types of inputs and can potentially reveal the biological patterns that could be missed by other logo generators

    Clustering System and Clustering Support Vector Machine for Local Protein Structure Prediction

    Get PDF
    Protein tertiary structure plays a very important role in determining its possible functional sites and chemical interactions with other related proteins. Experimental methods to determine protein structure are time consuming and expensive. As a result, the gap between protein sequence and its structure has widened substantially due to the high throughput sequencing techniques. Problems of experimental methods motivate us to develop the computational algorithms for protein structure prediction. In this work, the clustering system is used to predict local protein structure. At first, recurring sequence clusters are explored with an improved K-means clustering algorithm. Carefully constructed sequence clusters are used to predict local protein structure. After obtaining the sequence clusters and motifs, we study how sequence variation for sequence clusters may influence its structural similarity. Analysis of the relationship between sequence variation and structural similarity for sequence clusters shows that sequence clusters with tight sequence variation have high structural similarity and sequence clusters with wide sequence variation have poor structural similarity. Based on above knowledge, the established clustering system is used to predict the tertiary structure for local sequence segments. Test results indicate that highest quality clusters can give highly reliable prediction results and high quality clusters can give reliable prediction results. In order to improve the performance of the clustering system for local protein structure prediction, a novel computational model called Clustering Support Vector Machines (CSVMs) is proposed. In our previous work, the sequence-to-structure relationship with the K-means algorithm has been explored by the conventional K-means algorithm. The K-means clustering algorithm may not capture nonlinear sequence-to-structure relationship effectively. As a result, we consider using Support Vector Machine (SVM) to capture the nonlinear sequence-to-structure relationship. However, SVM is not favorable for huge datasets including millions of samples. Therefore, we propose a novel computational model called CSVMs. Taking advantage of both the theory of granular computing and advanced statistical learning methodology, CSVMs are built specifically for each information granule partitioned intelligently by the clustering algorithm. Compared with the clustering system introduced previously, our experimental results show that accuracy for local structure prediction has been improved noticeably when CSVMs are applied

    Multidimensional Feature Engineering for Post-Translational Modification Prediction Problems

    Get PDF
    Protein sequence data has been produced at an astounding speed. This creates an opportunity to characterize these proteins for the treatment of illness. A crucial characterization of proteins is their post translational modifications (PTM). There are 20 amino acids coded by DNA after coding (translation) nearly every protein is modified at an amino acid level. We focus on three specific PTMs. First is the bonding formed between two cysteine amino acids, thus introducing a loop to the straight chain of a protein. Second, we predict which cysteines can generally be modified (oxidized). Finally, we predict which lysine amino acids are modified by the active form of Vitamin B6 (PLP/pyridoxal-5-phosphate.) Our work aims to predict the PTM\u27s from protein sequencing data. When available, we integrate other data sources to improve prediction. Data mining finds patterns in data and uses these patterns to give a confidence score to unknown PTMs. There are many steps to data mining; however, our focus is on the feature engineering step i.e. the transforming of raw data into an intelligible form for a prediction algorithm. Our primary innovation is as follows: First, we created the Local Similarity Matrix (LSM), a description of the evolutionarily relatedness of a cysteine and its neighboring amino acids. This feature is taken two at a time and template matched to other cysteine pairs. If they are similar, then we give a high probability of it sharing the same bonding state. LSM is a three step algorithm, 1) a matrix of amino acid probabilities is created for each cysteine and its neighbors from an alignment. 2) We multiply the iv square of the BLOSUM62 matrix diagonal to each of the corresponding amino acids. 3) We z-score normalize the matrix by row. Next, we innovated the Residue Adjacency Matrix (RAM) for sequential and 3-D space (integration of protein coordinate data). This matrix describes cysteine\u27s neighbors but at much greater distances than most algorithms. It is particularly effective at finding conserved residues that are further away while still remaining a compact description. More data than necessary incurs the curse of dimensionality. RAM runs in O(n) time, making it very useful for large datasets. Finally, we produced the Windowed Alignment Scoring algorithm (WAS). This is a vector of protein window alignment bit scores. The alignments are one to all. Then we apply dimensionality reduction for gains in speed and performance. WAS uses the BLAST algorithm to align sequences within a window surrounding potential PTMs, in this case PLP attached to Lysine. In the case of WAS, we tried many alignment algorithms and used the approximation that BLAST provides to reduce computational time from months to days. The performances of different alignment algorithms did not vary significantly. The applications of this work are many. It has been shown that cysteine bonding configurations play a critical role in the folding of proteins. Solving the protein folding problem will help us to find the solution to Alzheimer\u27s disease that is due to a misfolding of the amyloid-beta protein. Cysteine oxidation has been shown to play a role in oxidative stress, a situation when free radicals become too abundant in the body. Oxidative stress leads to chronic illness such as diabetes, cancer, heart disease and Parkinson\u27s. Lysine in concert with PLP catalyzes the aminotransferase reaction. Research suggests that anti-cancer drugs will potentially selectively inhibit this reaction. Others have targeted this reaction for the treatment of epilepsy and addictions

    De Novo Protein Structure Modeling from Cryoem Data Through a Dynamic Programming Algorithm in the Secondary Structure Topology Graph

    Get PDF
    Proteins are the molecules carry out the vital functions and make more than the half of dry weight in every cell. Protein in nature folds into a unique and energetically favorable 3-Dimensional (3-D) structure which is critical and unique to its biological function. In contrast to other methods for protein structure determination, Electron Cryorricroscopy (CryoEM) is able to produce volumetric maps of proteins that are poorly soluble, large and hard to crystallize. Furthermore, it studies the proteins in their native environment. Unfortunately, the volumetric maps generated by current advances in CryoEM technique produces protein maps at medium resolution about (~5 to 10Ã…) in which it is hard to determine the atomic-structure of the protein. However, the resolution of the volumetric maps is improving steadily, and recent works could obtain atomic models at higher resolutions (~3Ã…). De novo protein modeling is the process of building the structure of the protein using its CryoEM volumetric map. Thereupon, the volumetric maps at medium resolution generated by CryoEM technique proposed a new challenge. At the medium resolution, the location and orientation of secondary structure elements (SSE) can be visually and computationally identified. However, the order and direction (called protein topology) of the SSEs detected from the CryoEM volumetric map are not visible. In order to determine the protein structure, the topology of the SSEs has to be figured out and then the backbone can be built. Consequently, the topology problem has become a bottle neck for protein modeling using CryoEM In this dissertation, we focus to establish an effective computational framework to derive the atomic structure of a protein from the medium resolution CryoEM volumetric maps. This framework includes a topology graph component to rank effectively the topologies of the SSEs and a model building component. In order to generate the small subset of candidate topologies, the problem is translated into a layered graph representation. We developed a dynamic programming algorithm (TopoDP) for the new representation to overcome the problem of large search space. Our approach shows the improved accuracy, speed and memory use when compared with existing methods. However, the generating of such set was infeasible using a brute force method. Therefore, the topology graph component effectively reduces the topological space using the geometrical features of the secondary structures through a constrained K-shortest paths method in our layered graph. The model building component involves the bending of a helix and the loop construction using skeleton of the volumetric map. The forward-backward CCD is applied to bend the helices and model the loops

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Multiobjective optimization in bioinformatics and computational biology

    Get PDF

    Protein Structure

    Get PDF
    Since the dawn of recorded history, and probably even before, men and women have been grasping at the mechanisms by which they themselves exist. Only relatively recently, did this grasp yield anything of substance, and only within the last several decades did the proteins play a pivotal role in this existence. In this expose on the topic of protein structure some of the current issues in this scientific field are discussed. The aim is that a non-expert can gain some appreciation for the intricacies involved, and in the current state of affairs. The expert meanwhile, we hope, can gain a deeper understanding of the topic
    • …
    corecore