4,140 research outputs found

    Predictive Encoding of Contextual Relationships for Perceptual Inference, Interpolation and Prediction

    Full text link
    We propose a new neurally-inspired model that can learn to encode the global relationship context of visual events across time and space and to use the contextual information to modulate the analysis by synthesis process in a predictive coding framework. The model learns latent contextual representations by maximizing the predictability of visual events based on local and global contextual information through both top-down and bottom-up processes. In contrast to standard predictive coding models, the prediction error in this model is used to update the contextual representation but does not alter the feedforward input for the next layer, and is thus more consistent with neurophysiological observations. We establish the computational feasibility of this model by demonstrating its ability in several aspects. We show that our model can outperform state-of-art performances of gated Boltzmann machines (GBM) in estimation of contextual information. Our model can also interpolate missing events or predict future events in image sequences while simultaneously estimating contextual information. We show it achieves state-of-art performances in terms of prediction accuracy in a variety of tasks and possesses the ability to interpolate missing frames, a function that is lacking in GBM

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    Spatiotemporal Patterns and Predictability of Cyberattacks

    Get PDF
    Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Measuring, Predicting and Visualizing Short-Term Change in Word Representation and Usage in VKontakte Social Network

    Full text link
    Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. Such dynamics are especially notable during a period of crisis. This work addresses several important tasks of measuring, visualizing and predicting short term text representation shift, i.e. the change in a word's contextual semantics, and contrasting such shift with surface level word dynamics, or concept drift, observed in social media streams. Unlike previous approaches on learning word representations from text, we study the relationship between short-term concept drift and representation shift on a large social media corpus - VKontakte posts in Russian collected during the Russia-Ukraine crisis in 2014-2015. Our novel contributions include quantitative and qualitative approaches to (1) measure short-term representation shift and contrast it with surface level concept drift; (2) build predictive models to forecast short-term shifts in meaning from previous meaning as well as from concept drift; and (3) visualize short-term representation shift for example keywords to demonstrate the practical use of our approach to discover and track meaning of newly emerging terms in social media. We show that short-term representation shift can be accurately predicted up to several weeks in advance. Our unique approach to modeling and visualizing word representation shifts in social media can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event detection

    Spatiotemporal patterns and predictability of cyberattacks

    Full text link
    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing {\em macroscopic} properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches

    Visual analytics of location-based social networks for decision support

    Get PDF
    Recent advances in technology have enabled people to add location information to social networks called Location-Based Social Networks (LBSNs) where people share their communication and whereabouts not only in their daily lives, but also during abnormal situations, such as crisis events. However, since the volume of the data exceeds the boundaries of human analytical capabilities, it is almost impossible to perform a straightforward qualitative analysis of the data. The emerging field of visual analytics has been introduced to tackle such challenges by integrating the approaches from statistical data analysis and human computer interaction into highly interactive visual environments. Based on the idea of visual analytics, this research contributes the techniques of knowledge discovery in social media data for providing comprehensive situational awareness. We extract valuable hidden information from the huge volume of unstructured social media data and model the extracted information for visualizing meaningful information along with user-centered interactive interfaces. We develop visual analytics techniques and systems for spatial decision support through coupling modeling of spatiotemporal social media data, with scalable and interactive visual environments. These systems allow analysts to detect and examine abnormal events within social media data by integrating automated analytical techniques and visual methods. We provide comprehensive analysis of public behavior response in disaster events through exploring and examining the spatial and temporal distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs for anomalous human movement analysis during crises by incorporating a novel classification technique. Finally, we introduce a visual analytics approach for forecasting the overall flow of human crowds

    Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars

    Full text link
    Event cameras are bio-inspired vision sensors that naturally capture the dynamics of a scene, filtering out redundant information. This paper presents a deep neural network approach that unlocks the potential of event cameras on a challenging motion-estimation task: prediction of a vehicle's steering angle. To make the best out of this sensor-algorithm combination, we adapt state-of-the-art convolutional architectures to the output of event sensors and extensively evaluate the performance of our approach on a publicly available large scale event-camera dataset (~1000 km). We present qualitative and quantitative explanations of why event cameras allow robust steering prediction even in cases where traditional cameras fail, e.g. challenging illumination conditions and fast motion. Finally, we demonstrate the advantages of leveraging transfer learning from traditional to event-based vision, and show that our approach outperforms state-of-the-art algorithms based on standard cameras.Comment: 9 pages, 8 figures, 6 tables. Video: https://youtu.be/_r_bsjkJTH

    DxNAT - Deep Neural Networks for Explaining Non-Recurring Traffic Congestion

    Full text link
    Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year from Nashville, TN to train a multi-layered deep neural network. The traffic dataset contains over 900 million data records. The network is thereafter used to classify the real-time data and identify anomalous operations. Compared with traditional approaches of using statistical or machine learning techniques, our model reaches an accuracy of 98.73 percent when identifying traffic congestion caused by football games. Our approach first encodes the traffic across a region as a scaled image. After that the image data from different timestamps is fused with event- and time-related data. Then a crossover operator is used as a data augmentation method to generate training datasets with more balanced classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We present the analysis of the training time and the inference time separately
    corecore