1,137 research outputs found

    On Invariants for Spatial Graphs

    Get PDF
    We use combinatorial knot theory to construct invariants for spatial graphs. This is done by performing certain replacements at each vertex of a spatial graph diagram D , which results in a collection of knot and link diagrams in D. By applying known invariants for classical knots and links to the resulting collection, we obtain invariants for spatial graphs. We also show that for the case of undirected spatial graphs, the invariants we construct here satisfy a certain contraction-deletion recurrence relation

    A Tutte decomposition for matrices and bimatroids

    Get PDF
    AbstractWe develop a Tutte decomposition theory for matrices and their combinatorial abstractions, bimatroids. As in the graph or matroid case, this theory is based on a deletion–contraction decomposition. The contribution from the deletion, derived by an inclusion–exclusion argument, consists of three terms. With one more term contributed from the contraction, the decomposition has four terms in general. There are universal decomposition invariants, one of them being a corank–nullity polynomial. Under a simple change of variables, the corank–nullity polynomial equals a weighted characteristic polynomial. This gives an analog of an identity of Tutte. Applications to counting and critical problems on matrices and graphs are given

    Arrow ribbon graphs

    Full text link
    We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification

    Tutte's dichromate for signed graphs

    Full text link
    We introduce the ``trivariate Tutte polynomial" of a signed graph as an invariant of signed graphs up to vertex switching that contains among its evaluations the number of proper colorings and the number of nowhere-zero flows. In this, it parallels the Tutte polynomial of a graph, which contains the chromatic polynomial and flow polynomial as specializations. The number of nowhere-zero tensions (for signed graphs they are not simply related to proper colorings as they are for graphs) is given in terms of evaluations of the trivariate Tutte polynomial at two distinct points. Interestingly, the bivariate dichromatic polynomial of a biased graph, shown by Zaslavsky to share many similar properties with the Tutte polynomial of a graph, does not in general yield the number of nowhere-zero flows of a signed graph. Therefore the ``dichromate" for signed graphs (our trivariate Tutte polynomial) differs from the dichromatic polynomial (the rank-size generating function). The trivariate Tutte polynomial of a signed graph can be extended to an invariant of ordered pairs of matroids on a common ground set -- for a signed graph, the cycle matroid of its underlying graph and its frame matroid form the relevant pair of matroids. This invariant is the canonically defined Tutte polynomial of matroid pairs on a common ground set in the sense of a recent paper of Krajewski, Moffatt and Tanasa, and was first studied by Welsh and Kayibi as a four-variable linking polynomial of a matroid pair on a common ground set.Comment: 53 pp. 9 figure

    Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term ∑s∣ps∣+μ\sum_{s}|p_s| + \mu

    Full text link
    We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank dd Tensorial Group Field Theory. These models are called Abelian because their fields live on U(1)DU(1)^D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models Ï•2n\phi^{2n} over U(1)U(1), and a matrix model over U(1)2U(1)^2. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension DD. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank dd Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.Comment: 69 pages, 35 figure

    Recipe theorems for polynomial invariants on ribbon graphs with half-edges

    Full text link
    We provide recipe theorems for the Bollob\`as and Riordan polynomial R\mathcal{R} defined on classes of ribbon graphs with half-edges introduced in arXiv:1310.3708[math.GT]. We also define a generalized transition polynomial QQ on this new category of ribbon graphs and establish a relationship between QQ and R\mathcal{R}.Comment: 24 pages, 14 figure

    On the Tutte-Krushkal-Renardy polynomial for cell complexes

    Full text link
    Recently V. Krushkal and D. Renardy generalized the Tutte polynomial from graphs to cell complexes. We show that evaluating this polynomial at the origin gives the number of cellular spanning trees in the sense of A. Duval, C. Klivans, and J. Martin. Moreover, after a slight modification, the Tutte-Krushkal-Renardy polynomial evaluated at the origin gives a weighted count of cellular spanning trees, and therefore its free term can be calculated by the cellular matrix-tree theorem of Duval et al. In the case of cell decompositions of a sphere, this modified polynomial satisfies the same duality identity as the original polynomial. We find that evaluating the Tutte-Krushkal-Renardy along a certain line gives the Bott polynomial. Finally we prove skein relations for the Tutte-Krushkal-Renardy polynomial..Comment: Minor revision according to a reviewer comments. To appear in the Journal of Combinatorial Theory, Series
    • …
    corecore