1,536 research outputs found

    Contracting Mapping on Normed Linear Space

    Get PDF
    We would like to express our gratitude to Prof. Yatsuka Nakamura.In this article, we described the contracting mapping on normed linear space. Furthermore, we applied that mapping to ordinary differential equations on real normed space. Our method is based on the one presented by Schwarz [29].Artur Korniłowicz - My work has been supported by the Polish Ministry of Science and Higher Education project “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519 385136).Yasunari Shidama - My work has been supported by JSPS KAKENHI 22300285.Miyajima Keiichi - Ibaraki University Faculty of Engineering, Hitachi, JapanKorniłowicz Artur - Institute of Informatics, University of Białystok, Sosnowa 64, 15-887 Białystok PolandShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992.Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249-253, 2003.Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011, doi: 10.2478/v10037-011-0003-8.Keiichi Miyajima, Artur Korniłowicz, and Yasunari Shidama. Riemann integral of functions from R into n-dimensional real normed space. Formalized Mathematics, 20(1):79-86, 2012, doi: 10.2478/v10037-012-0011-3.Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.Takaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces. Formalized Mathematics, 12(3):277-279, 2004.Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.Hiroyuki Okazaki, Noboru Endou, Keiko Narita, and Yasunari Shidama. Differentiable functions into real normed spaces. Formalized Mathematics, 19(2):69-72, 2011, doi: 10.2478/v10037-011-0012-7.Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Laurent Schwartz. Cours d’analyse II, Ch. 5. HERMANN, Paris, 1967. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000271006300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.Yasumasa Suzuki. Banach space of bounded real sequences. Formalized Mathematics, 12(2):77-83, 2004.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Categories, norms and weights

    Full text link
    The well-known Lawvere category R of extended real positive numbers comes with a monoidal closed structure where the tensor product is the sum. But R has another such structure, given by multiplication, which is *-autonomous. Normed sets, with a norm in R, inherit thus two symmetric monoidal closed structures, and categories enriched on one of them have a 'subadditive' or 'submultiplicative' norm, respectively. Typically, the first case occurs when the norm expresses a cost, the second with Lipschitz norms. This paper is a preparation for a sequel, devoted to 'weighted algebraic topology', an enrichment of directed algebraic topology. The structure of R, and its extension to the complex projective line, might be a first step in abstracting a notion of algebra of weights, linked with physical measures.Comment: Revised version, 16 pages. Some minor correction

    Analytic geometry over F_1 and the Fargues-Fontaine curve

    Full text link
    This paper develops a theory of analytic geometry over the field with one element. The approach used is the analytic counter-part of the Toen-Vaquie theory of schemes over F_1, i.e. the base category relative to which we work out our theory is the category of sets endowed with norms (or families of norms). Base change functors to analytic spaces over Banach rings are studied and the basic spaces of analytic geometry (like polydisks) are recovered as a base change of analytic spaces over F_1. We end by discussing some applications of our theory to the theory of the Fargues-Fontaine curve and to the ring Witt vectors.Comment: Small corrections have been made in the last section of the paper and some typos have been correcte

    Relative measure homology and continuous bounded cohomology of topological pairs

    Full text link
    Measure homology was introduced by Thurston in his notes about the geometry and topology of 3-manifolds, where it was exploited in the computation of the simplicial volume of hyperbolic manifolds. Zastrow and Hansen independently proved that there exists a canonical isomorphism between measure homology and singular homology (on the category of CW-complexes), and it was then shown by Loeh that, in the absolute case, such isomorphism is in fact an isometry with respect to the L^1-seminorm on singular homology and the total variation seminorm on measure homology. Loeh's result plays a fundamental role in the use of measure homology as a tool for computing the simplicial volume of Riemannian manifolds. This paper deals with an extension of Loeh's result to the relative case. We prove that relative singular homology and relative measure homology are isometrically isomorphic for a wide class of topological pairs. Our results can be applied for instance in computing the simplicial volume of Riemannian manifolds with boundary. Our arguments are based on new results about continuous (bounded) cohomology of topological pairs, which are probably of independent interest.Comment: 35 page

    On maximal immediate extensions of valued division algebras

    Get PDF
    We show an extension theorem for strictly contracting bilinear mappings into a spherically complete valued vector space and we apply this result to prove that every maximal valued division algebra having the same characteristic as its residue division algebra is spherically complete

    The rigidity of infinite graphs

    Full text link
    A rigidity theory is developed for the Euclidean and non-Euclidean placements of countably infinite simple graphs in R^d with respect to the classical l^p norms, for d>1 and 1<p<\infty. Generalisations are obtained for the Laman and Henneberg combinatorial characterisations of generic infinitesimal rigidity for finite graphs in the Euclidean plane. Also Tay's multi-graph characterisation of the rigidity of generic finite body-bar frameworks in d-dimensional Euclidean space is generalised to the non-Euclidean l^p norms and to countably infinite graphs. For all dimensions and norms it is shown that a generically rigid countable simple graph is the direct limit of an inclusion tower of finite graphs for which the inclusions satisfy a relative rigidity property. For d>2 a countable graph which is rigid for generic placements in R^d may fail the stronger property of sequential rigidity, while for d=2 the equivalence with sequential rigidity is obtained from the generalised Laman characterisations. Applications are given to the flexibility of non-Euclidean convex polyhedra and to the infinitesimal and continuous rigidity of compact infinitely-faceted simplicial polytopes.Comment: 51 page

    Sufficient conditions for convergence of the Sum-Product Algorithm

    Get PDF
    We derive novel conditions that guarantee convergence of the Sum-Product algorithm (also known as Loopy Belief Propagation or simply Belief Propagation) to a unique fixed point, irrespective of the initial messages. The computational complexity of the conditions is polynomial in the number of variables. In contrast with previously existing conditions, our results are directly applicable to arbitrary factor graphs (with discrete variables) and are shown to be valid also in the case of factors containing zeros, under some additional conditions. We compare our bounds with existing ones, numerically and, if possible, analytically. For binary variables with pairwise interactions, we derive sufficient conditions that take into account local evidence (i.e., single variable factors) and the type of pair interactions (attractive or repulsive). It is shown empirically that this bound outperforms existing bounds.Comment: 15 pages, 5 figures. Major changes and new results in this revised version. Submitted to IEEE Transactions on Information Theor
    corecore