241 research outputs found

    Hamiltonian Cycles in Polyhedral Maps

    Full text link
    We present a necessary and sufficient condition for existence of a contractible, non-separating and noncontractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces. In particular, we show the existence of contractible Hamiltonian cycle in equivelar triangulated maps. We also present an algorithm to construct such cycles whenever it exists.Comment: 14 page

    Contractible Hamiltonian Cycles in Polyhedral Maps

    Full text link
    We present a necessary and sufficient condition for existence of a contractible Hamiltonian Cycle in the edge graph of equivelar maps on surfaces. We also present an algorithm to construct such cycles. This is further generalized and shown to hold for more general maps.Comment: 9 pages, 1 figur

    (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegard surfaces

    Full text link
    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.Comment: 27 pages, many figures, v2: minor correction

    Some Triangulated Surfaces without Balanced Splitting

    Full text link
    Let G be the graph of a triangulated surface Σ\Sigma of genus g2g\geq 2. A cycle of G is splitting if it cuts Σ\Sigma into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.Comment: 15 pages, 7 figure

    Universal symmetry-protected topological invariants for symmetry-protected topological states

    Full text link
    Symmetry-protected topological (SPT) states are short-range entangled states with a symmetry G. They belong to a new class of quantum states of matter which are classified by the group cohomology Hd+1(G,R/Z)H^{d+1}(G,\mathbb{R}/\mathbb{Z}) in d-dimensional space. In this paper, we propose a class of symmetry- protected topological invariants that may allow us to fully characterize SPT states with a symmetry group G (ie allow us to measure the cocycles in Hd+1(G,R/Z)H^{d+1}(G,\mathbb{R}/\mathbb{Z}) that characterize the SPT states). We give an explicit and detailed construction of symmetry-protected topological invariants for 2+1D SPT states. Such a construction can be directly generalized to other dimensions.Comment: 12 pages, 11 figures. Added reference

    Structure of the Entanglement Entropy of (3+1)D Gapped Phases of Matter

    Full text link
    We study the entanglement entropy of gapped phases of matter in three spatial dimensions. We focus in particular on size-independent contributions to the entropy across entanglement surfaces of arbitrary topologies. We show that for low energy fixed-point theories, the constant part of the entanglement entropy across any surface can be reduced to a linear combination of the entropies across a sphere and a torus. We first derive our results using strong sub-additivity inequalities along with assumptions about the entanglement entropy of fixed-point models, and identify the topological contribution by considering the renormalization group flow; in this way we give an explicit definition of topological entanglement entropy StopoS_{\mathrm{topo}} in (3+1)D, which sharpens previous results. We illustrate our results using several concrete examples and independent calculations, and show adding "twist" terms to the Lagrangian can change StopoS_{\mathrm{topo}} in (3+1)D. For the generalized Walker-Wang models, we find that the ground state degeneracy on a 3-torus is given by exp(3Stopo[T2])\exp(-3S_{\mathrm{topo}}[T^2]) in terms of the topological entanglement entropy across a 2-torus. We conjecture that a similar relationship holds for Abelian theories in (d+1)(d+1) dimensional spacetime, with the ground state degeneracy on the dd-torus given by exp(dStopo[Td1])\exp(-dS_{\mathrm{topo}}[T^{d-1}]).Comment: 34 pages, 16 figure
    corecore