406 research outputs found

    On stability of the Hamiltonian index under contractions and closures

    Get PDF
    The hamiltonian index of a graph GG is the smallest integer kk such that the kk-th iterated line graph of GG is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)A_G(F)-contractible subgraph FF of a graph GG nor the closure operation performed on GG (if GG is claw-free) affects the value of the hamiltonian index of a graph GG

    A consistent treatment of link and writhe for open rods, and their relation to end rotation

    Get PDF
    We combine and extend the work of Alexander & Antman \cite{alexander.82} and Fuller \cite{fuller.71,fuller.78} to give a framework within which precise definitions can be given of topological and geometrical quantities characterising the contortion of open rods undergoing large deformations under end loading. We use these definitions to examine the extension of known results for closed rods to open rods. In particular, we formulate the analogue of the celebrated formula Lk=Tw+WrLk=Tw+Wr (link equals twist plus writhe) for open rods and propose an end rotation, through which the applied end moment does work, in the form of an integral over the length of the rod. The results serve to promote the variational analysis of boundary-value problems for rods undergoing large deformations.Comment: 17 pages, 4 figure

    Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds

    Get PDF
    We give a sufficient condition for a metric (homology) manifold to be locally bi-Lipschitz equivalent to an open subset in \rn. The condition is a Sobolev condition for a measurable coframe of flat 1-forms. In combination with an earlier work of D. Sullivan, our methods also yield an analytic characterization for smoothability of a Lipschitz manifold in terms of a Sobolev regularity for frames in a cotangent structure. In the proofs, we exploit the duality between flat chains and flat forms, and recently established differential analysis on metric measure spaces. When specialized to \rn, our result gives a kind of asymptotic and Lipschitz version of the measurable Riemann mapping theorem as suggested by Sullivan

    Exploiting structure to cope with NP-hard graph problems: Polynomial and exponential time exact algorithms

    Get PDF
    An ideal algorithm for solving a particular problem always finds an optimal solution, finds such a solution for every possible instance, and finds it in polynomial time. When dealing with NP-hard problems, algorithms can only be expected to possess at most two out of these three desirable properties. All algorithms presented in this thesis are exact algorithms, which means that they always find an optimal solution. Demanding the solution to be optimal means that other concessions have to be made when designing an exact algorithm for an NP-hard problem: we either have to impose restrictions on the instances of the problem in order to achieve a polynomial time complexity, or we have to abandon the requirement that the worst-case running time has to be polynomial. In some cases, when the problem under consideration remains NP-hard on restricted input, we are even forced to do both. Most of the problems studied in this thesis deal with partitioning the vertex set of a given graph. In the other problems the task is to find certain types of paths and cycles in graphs. The problems all have in common that they are NP-hard on general graphs. We present several polynomial time algorithms for solving restrictions of these problems to specific graph classes, in particular graphs without long induced paths, chordal graphs and claw-free graphs. For problems that remain NP-hard even on restricted input we present exact exponential time algorithms. In the design of each of our algorithms, structural graph properties have been heavily exploited. Apart from using existing structural results, we prove new structural properties of certain types of graphs in order to obtain our algorithmic results

    Exotica or the failure of the strong cosmic censorship in four dimensions

    Get PDF
    In this letter a generic counterexample to the strong cosmic censor conjecture is exhibited. More precisely---taking into account that the conjecture lacks any precise formulation yet---first we make sense of what one would mean by a "generic counterexample" by introducing the mathematically unambigous and logically stronger concept of a "robust counterexample". Then making use of Penrose' nonlinear graviton construction (i.e., twistor theory) and a Wick rotation trick we construct a smooth Ricci-flat but not flat Lorentzian metric on the largest member of the Gompf--Taubes uncountable radial family of large exotic R4{\mathbb R}^4's. We observe that this solution of the Lorentzian vacuum Einstein's equations with vanishing cosmological constant provides us with a sort of counterexample which is weaker than a "robust counterexample" but still reasonable to consider as a "generic counterexample". It is interesting that this kind of counterexample exists only in four dimensions.Comment: LaTeX, 11 pages, 1 figure, the final published versio
    corecore