665 research outputs found

    SDN and NFV for satellite infrastructures

    Get PDF
    The integration of SDN and NFV enablers into the satellite network could prove to be an essential means to save on physical sites, improve the time to bring new services to the market and open new ways to improve network resiliency, availability and efficiency. It can be considered that the above two enablers can play a central role in the integration of satellite to terrestrial technologies by using federated management of the network resources.Peer ReviewedPostprint (author's final draft

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Wireless network virtualization

    Get PDF
    Virtualization of wired networks and end computing systems has become one of the leading trends in networked ICT systems. In contrast relatively little virtualization has occurred in infrastructure based wireless networks, but the idea of virtualizing wireless access is gaining attention as it has the potential to improve spectrum utilization and perhaps create new services. In this paper we survey the state of the current research in virtualizing wireless networks. We define and describe possible architectures, the issues, hurdles and trends towards implementation of wireless network virtualization. © 2013 IEEE

    Performance Evaluation of v-eNodeB using Virtualized Radio Resource Management

    Get PDF
    With the demand upsurge for high bandwidth services, continuous increase in the number of cellular subscriptions, adoption of Internet of Things (IoT), and marked growth in Machine-to-Machine (M2M) traffic, there is great stress exerted on cellular network infrastructure. The present wireline and wireless networking technologies are rigid in nature and heavily hardware-dependent, as a result of which the process of infrastructure upgrade to keep up with future demand is cumbersome and expensive. Software-defined networks (SDN) hold the promise to decrease network rigidity by providing central control and flow abstraction, which in current network setups are hardware-based. The embrace of SDN in traditional cellular networks has led to the implementation of vital network functions in the form of software that are deployed in virtualized environments. This approach to move crucial and hardware intensive network functions to virtual environments is collectively referred to as network function virtualization (NFV). Our work evaluates the cost reduction and energy savings that can be achieved by the application of SDN and NFV technologies in cellular networks. In this thesis, we implement a virtualized eNodeB component (Radio Resource Management) to add agility to the network setup and improve performance, which we compare with a traditional resource manager. When combined with dynamic network resource allocation techniques proposed in Elastic Handoff, our hardware agnostic approach can achieve a greater reduction in capital and operational expenses through optimal use of network resources and efficient energy utilization. Advisor: Jitender S. Deogu

    Blockchain-enabled resource management and sharing for 6G communications

    Get PDF
    The sixth-generation (6G) network must provide performance superior to previous generations to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, and sub 1 ms latency and ubiquitous connection for the Internet of Everything (IoE). However, with the scarcity of spectrum resources, efficient resource management and sharing are crucial to achieving all these ambitious requirements. One possible technology to achieve all this is the blockchain. Because of its inherent properties, the blockchain has recently gained an important position, which is of great significance to 6G network and other networks. In particular, the integration of the blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this paper, we discuss the potentials of the blockchain for resource management and sharing in 6G using multiple application scenarios, namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems
    • …
    corecore