49,709 research outputs found

    The role of surface-based representations of shape in visual object recognition

    Get PDF
    This study contrasted the role of surfaces and volumetric shape primitives in three-dimensional object recognition. Observers (N�=�50) matched subsets of closed contour fragments, surfaces, or volumetric parts to whole novel objects during a whole�part matching task. Three factors were further manipulated: part viewpoint (either same or different between component parts and whole objects), surface occlusion (comparison parts contained either visible surfaces only, or a surface that was fully or partially occluded in the whole object), and target�distractor similarity. Similarity was varied in terms of systematic variation in nonaccidental (NAP) or metric (MP) properties of individual parts. Analysis of sensitivity (d�) showed a whole�part matching advantage for surface-based parts and volumes over closed contour fragments�but no benefit for volumetric parts over surfaces. We also found a performance cost in matching volumetric parts to wholes when the volumes showed surfaces that were occluded in the whole object. The same pattern was found for both same and different viewpoints, and regardless of target�distractor similarity. These findings challenge models in which recognition is mediated by volumetric part-based shape representations. Instead, we argue that the results are consistent with a surface-based model of high-level shape representation for recognition

    Efficient contour-based shape representation and matching

    Get PDF
    This paper presents an efficient method for calculating the similarity between 2D closed shape contours. The proposed algorithm is invariant to translation, scale change and rotation. It can be used for database retrieval or for detecting regions with a particular shape in video sequences. The proposed algorithm is suitable for real-time applications. In the first stage of the algorithm, an ordered sequence of contour points approximating the shapes is extracted from the input binary images. The contours are translation and scale-size normalized, and small sets of the most likely starting points for both shapes are extracted. In the second stage, the starting points from both shapes are assigned into pairs and rotation alignment is performed. The dissimilarity measure is based on the geometrical distances between corresponding contour points. A fast sub-optimal method for solving the correspondence problem between contour points from two shapes is proposed. The dissimilarity measure is calculated for each pair of starting points. The lowest dissimilarity is taken as the final dissimilarity measure between two shapes. Three different experiments are carried out using the proposed approach: letter recognition using a web camera, our own simulation of Part B of the MPEG-7 core experiment “CE-Shape1” and detection of characters in cartoon video sequences. Results indicate that the proposed dissimilarity measure is aligned with human intuition

    Using contour information and segmentation for object registration, modeling and retrieval

    Get PDF
    This thesis considers different aspects of the utilization of contour information and syntactic and semantic image segmentation for object registration, modeling and retrieval in the context of content-based indexing and retrieval in large collections of images. Target applications include retrieval in collections of closed silhouettes, holistic w ord recognition in handwritten historical manuscripts and shape registration. Also, the thesis explores the feasibility of contour-based syntactic features for improving the correspondence of the output of bottom-up segmentation to semantic objects present in the scene and discusses the feasibility of different strategies for image analysis utilizing contour information, e.g. segmentation driven by visual features versus segmentation driven by shape models or semi-automatic in selected application scenarios. There are three contributions in this thesis. The first contribution considers structure analysis based on the shape and spatial configuration of image regions (socalled syntactic visual features) and their utilization for automatic image segmentation. The second contribution is the study of novel shape features, matching algorithms and similarity measures. Various applications of the proposed solutions are presented throughout the thesis providing the basis for the third contribution which is a discussion of the feasibility of different recognition strategies utilizing contour information. In each case, the performance and generality of the proposed approach has been analyzed based on extensive rigorous experimentation using as large as possible test collections

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    Contour matching using ant colony optimization and curve evolution

    Get PDF
    Shape retrieval is a very important topic in computer vision. Image retrieval consists of selecting images that fulfil specific criteria from a collection of images. This thesis concentrates on contour-based image retrieval, in which we only explore the information located on the shape contour. There are many different kinds of shape retrieval methods. Most of the research in this field has till now concentrated on matching methods and how to achieve a meaningful correspondence. The matching process consist of finding correspondence between the points located on the designed contours. However, the huge number of incorporated points in the correspondence makes the matching process more complex. Furthermore, this scheme does not support computation of the correspondence intuitively without considering noise effect and distortions. Hence, heuristics methods are convoked to find acceptable solution. Moreover, some researches focus on improving polygonal modelling methods of a contour in such a way that the resulted contour is a good approximation of the original contour, which can be used to reduce the number of incorporated points in the matching. In this thesis, a novel approach for Ant Colony Optimization (ACO) contour matching that can be used to find an acceptable matching between contour shapes is developed. A polygonal evolution method proposed previously is selected to simplify the extracted contour. The main reason behind selecting this method is due to the use of a stopping criterion which must be predetermined. The match process is formulated as a Quadratic Assignment Problem (QAP) and resolved by using ACO. An approximated similarity is computed using original shape context descriptor and the Euclidean metric. The experimental results justify that the proposed approach is invariant to noise and distortions, and it is more robust to noise and distortion compared to the previously introduced Dominant Point (DP) Approach. This work serves as the fundamental study for assessing the Bender Test to diagnose dyslexic and non-dyslexic symptom in children
    corecore