2,562 research outputs found

    Facility layout planning. An extended literature review

    Full text link
    [EN] Facility layout planning (FLP) involves a set of design problems related to the arrangement of the elements that shape industrial production systems in a physical space. The fact that they are considered one of the most important design decisions as part of business operation strategies, and their proven repercussion on production systems' operation costs, efficiency and productivity, mean that this theme has been widely addressed in science. In this context, the present article offers a scientific literature review about FLP from the operations management perspective. The 232 reviewed articles were classified as a large taxonomy based on type of problem, approach and planning stage and characteristics of production facilities by configuring the material handling system and methods to generate and assess layout alternatives. We stress that the generation of layout alternatives was done mainly using mathematical optimisation models, specifically discrete quadratic programming models for similar sized departments, or continuous linear and non-linear mixed integer programming models for different sized departments. Other approaches followed to generate layout alternatives were expert's knowledge and specialised software packages. Generally speaking, the most frequent solution algorithms were metaheuristics.The research leading to these results received funding from the European Union H2020 Program under grant agreement No 958205 `Industrial Data Services for Quality Control in Smart Manufacturing (i4Q)'and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 `Optimisation of zerodefectsproduction technologies enabling supply chains 4.0 (CADS4.0)'Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2021). Facility layout planning. An extended literature review. International Journal of Production Research. 59(12):3777-3816. https://doi.org/10.1080/00207543.2021.189717637773816591

    An Integrated, Evolutionary Approach to Facility Layout and Detailed Design

    Get PDF
    The unequal-area, shape constrained facility layout problem is a NP-hard combinatorial optimization problem concerned with minimizing material handling costs. An integrated methodology that incorporates a genetic algorithm and a constructive heuristic is developed to simultaneously solve the traditional block layout problem of locating and shaping departments and the detailed design problem of locating the input/output stations of departments. These problems have received much attention over the past half-century with the majority of research focused on solving them individually or sequentially. This thesis aims to show that an integrated methodology which combines the problems and solves them in parallel is preferable to sequential approaches.The complexity of the integrated layout problem is reduced through a Flexbay formulation and through pre-assigned intra-departmental flow types. A genetic algorithm with a two-tiered solution structure generates and maintains a population of block layout solutions throughout an evolutionary process. Genetic operators reproduce and alter solutions in order to generate better solutions, find new search directions, and prevent premature convergence of the algorithm. An adaptive penalty mechanism guides the search process and reduces the computational overhead of the algorithm. Through the placement of input/output stations, the optimization of a block layout's material flow network is implemented as a subroutine to the genetic algorithm. A contour distance metric is used to evaluate the costs associated with material movement between the input/output stations of departments and aids in constructing practical aisle structures. A constructive placement heuristic places the input/output stations and perturbs them until no further improvement to a layout can be realized. The integrated approach is applied to several well known problems over a comprehensive test plan. The results from the integrated approach indicate moderate variability in the solutions and considerable computational expense. To compare the integrated methodology to prior methodologies, some of the best results from the unequal-area facility layout problem are selected from prior research and the I/O optimization heuristic is applied to them. The results of the integrated approach uniformly and significantly outperform the results obtained through sequential optimization. The integrated methodology demonstrates the value of a simultaneous approach to the unequal-area facility layout problem

    The aperiodic facility layout problem with time-varying demands and an optimal master-slave solution approach

    Get PDF
    In many seasonal industries, customer demands are constantly changing over time, and accordingly the facility layout should be re-optimized in a timely manner to adapt to changing material handling patterns among manufacturing departments. This paper investigates the aperiodic facility layout problem (AFLP) that involves arranging facilities layout and re-layout aperiodically in a dynamic manufacturing environment during a given planning horizon. The AFLP is decomposed into a master problem and a combination set of static facility layout problems (FLPs, the slave problems) without loss of optimality, and all problems are formulated as mixed-integer linear programming (MILP) models that can be solved by MIP solvers for small-sized problems. An exact backward dynamic programming (BDP) algorithm with a computational complexity of O(n 2) is developed for the master problem, and an improved linear programming based problem evolution algorithm (PEA-LP) is developed for the traditional static FLP. Computational experiments are conducted on two new problems and twelve well-known benchmark problems from the literature, and the experimental results show that the proposed solution approach is promising for solving the AFLP with practical sizes of problem instances. In addition, the improved PEA-LP found new best solutions for five benchmark problems

    HERITAGE SITES IN VISAKHAPATNAM CITY: TYPOLOGIES, ARCHITECTURAL STYLES AND STATUS

    Get PDF
    Heritage on mother earth was recognized as one of the important fields of human endeavor. Many nations around the world have been pursuing the subject for the benefit of present and future generations. In the process, several first order cities around the world have geared up to meet the requirement. However, second order cities in many nations, especially in developing countries like India did not yet raise to the occasion. Therefore, a comprehensive study on heritage and its preservation was taken up in Visakhapatnam, India and the present communication dealing with heritage sites in Visakhapatnam Metropolitan Region forms a part of it. During this attempt, a total of 44 cultural heritage sites were identified from the city and their architectural styles, typologies and status analyzed

    Master Plan and Design of a Low Income Housing Complex for the Friendly House

    Get PDF
    Friendly House, a non-profit organization in Worcester Massachusetts, is looking to expand their current facilities to accommodate their growing clientele of less fortunate members of the community. To satisfy Friendly House’s needs, the project team developed a master plan and designed a housing complex that would provide food services and a source of income. This site design integrates a new main facility, additional parking and recreational space, and a complete architectural and structural layout for the housing complex

    Mixed integer programming model for optimizing the layout of an ICU vehicle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112).</p> <p>Methods</p> <p>The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender.</p> <p>Results</p> <p>As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles.</p> <p>Conclusion</p> <p>The outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. The authors advocate this approach to address similar problems within the field of Health Services to improve the efficiency and the effectiveness of the processes involved. Problems such as those in operation rooms or emergency rooms, where the availability of a large amount of material is critical are eligible to be dealt with in a simmilar manner.</p

    Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    Get PDF
    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements
    corecore