29,799 research outputs found

    Complexified Path Integrals and the Phases of Quantum Field Theory

    Full text link
    The path integral by which quantum field theories are defined is a particular solution of a set of functional differential equations arising from the Schwinger action principle. In fact these equations have a multitude of additional solutions which are described by integrals over a complexified path. We discuss properties of the additional solutions which, although generally disregarded, may be physical with known examples including spontaneous symmetry breaking and theta vacua. We show that a consideration of the full set of solutions yields a description of phase transitions in quantum field theories which complements the usual description in terms of the accumulation of Lee-Yang zeroes. In particular we argue that non-analyticity due to the accumulation of Lee-Yang zeros is related to Stokes phenomena and the collapse of the solution set in various limits including but not restricted to, the thermodynamic limit. A precise demonstration of this relation is given in terms of a zero dimensional model. Finally, for zero dimensional polynomial actions, we prove that Borel resummation of perturbative expansions, with several choices of singularity avoiding contours in the complex Borel plane, yield inequivalent solutions of the action principle equations.Comment: 15 pages, 9 figures (newer version has better images

    Physically Realistic Solutions to the Ernst Equation on Hyperelliptic Riemann Surfaces

    Full text link
    We show that the class of hyperelliptic solutions to the Ernst equation (the stationary axisymmetric Einstein equations in vacuum) previously discovered by Korotkin and Neugebauer and Meinel can be derived via Riemann-Hilbert techniques. The present paper extends the discussion of the physical properties of these solutions that was begun in a Physical Review Letter, and supplies complete proofs. We identify a physically interesting subclass where the Ernst potential is everywhere regular except at a closed surface which might be identified with the surface of a body of revolution. The corresponding spacetimes are asymptotically flat and equatorially symmetric. This suggests that they could describe the exterior of an isolated body, for instance a relativistic star or a galaxy. Within this class, one has the freedom to specify a real function and a set of complex parameters which can possibly be used to solve certain boundary value problems for the Ernst equation. The solutions can have ergoregions, a Minkowskian limit and an ultrarelativistic limit where the metric approaches the extreme Kerr solution. We give explicit formulae for the potential on the axis and in the equatorial plane where the expressions simplify. Special attention is paid to the simplest non-static solutions (which are of genus two) to which the rigidly rotating dust disk belongs.Comment: 32 pages, 2 figures, uses pstricks.sty, updated version (October 7, 1998), to appear in Phys. Rev.

    Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph

    Get PDF
    We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3×33 \times 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.Comment: 39 pages, 3 figures; Fixed a typo in eq. (6.16

    The unified transform method for linear initial-boundary value problems: a spectral interpretation

    Full text link
    It is known that the unified transform method may be used to solve any well-posed initial-boundary value problem for a linear constant-coefficient evolution equation on the finite interval or the half-line. In contrast, classical methods such as Fourier series and transform techniques may only be used to solve certain problems. The solution representation obtained by such a classical method is known to be an expansion in the eigenfunctions or generalised eigenfunctions of the self-adjoint ordinary differential operator associated with the spatial part of the initial-boundary value problem. In this work, we emphasise that the unified transform method may be viewed as the natural extension of Fourier transform techniques for non-self-adjoint operators. Moreover, we investigate the spectral meaning of the transform pair used in the new method; we discuss the recent definition of a new class of spectral functionals and show how it permits the diagonalisation of certain non-self-adjoint spatial differential operators.Comment: 3 figure

    The Pearcey Process

    Full text link
    The extended Airy kernel describes the space-time correlation functions for the Airy process, which is the limiting process for a polynuclear growth model. The Airy functions themselves are given by integrals in which the exponents have a cubic singularity, arising from the coalescence of two saddle points in an asymptotic analysis. Pearcey functions are given by integrals in which the exponents have a quartic singularity, arising from the coalescence of three saddle points. A corresponding Pearcey kernel appears in a random matrix model and a Brownian motion model for a fixed time. This paper derives an extended Pearcey kernel by scaling the Brownian motion model at several times, and a system of partial differential equations whose solution determines associated distribution functions. We expect there to be a limiting nonstationary process consisting of infinitely many paths, which we call the Pearcey process, whose space-time correlation functions are expressible in terms of this extended kernel.Comment: LaTeX 24 pages. Version 3 has an improved exposition and corrects a minor erro
    • …
    corecore