1,088 research outputs found

    Improved Contour Detection by Non-Classical Receptive Field Inhibition

    Get PDF

    Dynamic and Integrative Properties of the Primary Visual Cortex

    Get PDF
    The ability to derive meaning from complex, ambiguous sensory input requires the integration of information over both space and time, as well as cognitive mechanisms to dynamically shape that integration. We have studied these processes in the primary visual cortex (V1), where neurons have been proposed to integrate visual inputs along a geometric pattern known as the association field (AF). We first used cortical reorganization as a model to investigate the role that a specific network of V1 connections, the long-range horizontal connections, might play in temporal and spatial integration across the AF. When retinal lesions ablate sensory information from portions of the visual field, V1 undergoes a process of reorganization mediated by compensatory changes in the network of horizontal collaterals. The reorganization accompanies the brain’s amazing ability to perceptually “fill-inâ€, or “seeâ€, the lost visual input. We developed a computational model to simulate cortical reorganization and perceptual fill-in mediated by a plexus of horizontal connections that encode the AF. The model reproduces the major features of the perceptual fill-in reported by human subjects with retinal lesions, and it suggests that V1 neurons, empowered by their horizontal connections, underlie both perceptual fill-in and normal integrative mechanisms that are crucial to our visual perception. These results motivated the second prong of our work, which was to experimentally study the normal integration of information in V1. Since psychophysical and physiological studies suggest that spatial interactions in V1 may be under cognitive control, we investigated the integrative properties of V1 neurons under different cognitive states. We performed extracellular recordings from single V1 neurons in macaques that were trained to perform a delayed-match-to-sample contour detection task. We found that the ability of V1 neurons to summate visual inputs from beyond the classical receptive field (cRF) imbues them with selectivity for complex contour shapes, and that neuronal shape selectivity in V1 changed dynamically according to the shapes monkeys were cued to detect. Over the population, V1 encoded subsets of the AF, predicted by the computational model, that shifted as a function of the monkeys’ expectations. These results support the major conclusions of the theoretical work; even more, they reveal a sophisticated mode of form processing, whereby the selectivity of the whole network in V1 is reshaped by cognitive state

    The "silent" surround of V1 receptive fields: theory and experiments

    Get PDF
    International audienceThe spiking response of a primary visual cortical cell to a stimulus placed within its receptive field can be up- and down-regulated by the simultaneous presentation of objects or scenes placed in the "silent" regions which surround the receptive field. We here review recent progresses that have been made both at the experimental and theoretical levels in the description of these so-called "Center/Surround" modulations and in the understanding of their neural basis. Without denying the role of a modulatory feedback from higher cortical areas recent results support the view that some of these phenomena result from the dynamic interplay between feedforward projections and horizontal intracortical connectivity in V1. Uncovering the functional role of the contextual periphery of cortical receptive fields has become an area of active investigation. The detailed comparison of electrophysiological and psychophysical data reveals strong correlations between the integrative behavior of V1 cells and some aspects of "low-level" and "mid-level" conscious perception. These suggest that as early as the V1 stage the visual system is able to make use of contextual cues to recover local visual scene properties or correct their interpretation. Promising ideas have emerged on the importance of such a strategy for the coding of visual scenes and the processing of static and moving objects

    Improved Contour Detection by Non-Classical Receptive Field Inhibition

    Get PDF

    Convolutional Neural Networks Exploiting Attributes of Biological Neurons

    Full text link
    In this era of artificial intelligence, deep neural networks like Convolutional Neural Networks (CNNs) have emerged as front-runners, often surpassing human capabilities. These deep networks are often perceived as the panacea for all challenges. Unfortunately, a common downside of these networks is their ''black-box'' character, which does not necessarily mirror the operation of biological neural systems. Some even have millions/billions of learnable (tunable) parameters, and their training demands extensive data and time. Here, we integrate the principles of biological neurons in certain layer(s) of CNNs. Specifically, we explore the use of neuro-science-inspired computational models of the Lateral Geniculate Nucleus (LGN) and simple cells of the primary visual cortex. By leveraging such models, we aim to extract image features to use as input to CNNs, hoping to enhance training efficiency and achieve better accuracy. We aspire to enable shallow networks with a Push-Pull Combination of Receptive Fields (PP-CORF) model of simple cells as the foundation layer of CNNs to enhance their learning process and performance. To achieve this, we propose a two-tower CNN, one shallow tower and the other as ResNet 18. Rather than extracting the features blindly, it seeks to mimic how the brain perceives and extracts features. The proposed system exhibits a noticeable improvement in the performance (on an average of 5%−10%5\%-10\%) on CIFAR-10, CIFAR-100, and ImageNet-100 datasets compared to ResNet-18. We also check the efficiency of only the Push-Pull tower of the network.Comment: 20 pages, 6 figure

    Contour Integration in Artifical Neural Networks

    Get PDF
    Under difficult viewing conditions, the brain's visual system uses a variety of modulatory techniques to supplement its core feedforward signal. One such technique is contour integration, whereby contextual stimuli from outside the classically defined receptive fields of neurons can affect their responses. It manifests in the primary visual (V1) cortex, a low layer of the visual cortex, and can selectively enhance smooth contours. Several mechanistic models, that can account for many of its neurophysiological properties, have been proposed in the literature. However, there has been limited exploration of the learning of biologically realistic contour integration circuits or of the role of contour integration in the processing of natural images. In this thesis, I present a biologically-inspired model of contour integration embedded in a task-driven artificial neural network. The model can relate the low-level neural phenomenon of contour integration to the high-level goals of its encompassing system. It uses intra-area lateral connections and an internal architecture inspired by the V1 cortex. Its parameters are learnt from optimizing performance on high-level tasks rather than being fixed at initialization. When trained to detect contours in a background of random edges, a task commonly used to examine contour integration in the brain, the model learns to integrate contours in a manner consistent with the brain. This is validated by comparing the model with observed data at the behavioral, neurophysiological and neuroanatomical levels. The model is also used to explore the role of contour integration in the perception of natural scenes. I investigate which natural image tasks benefit from contour integration, how it affects their performances and the consistency of trained models with properties of contour integration from more extensively studied artificial stimuli. Specifically, the model was trained on two natural image tasks: detection of all edges and the ability to distinguish if two points lie on the same or different contours. In natural images, the model was found to enhance weaker contours and demonstrated many properties that were similar to when it was trained on synthetic stimuli. Moreover, the features it learnt were robust and generalized well to test data from outside the distribution of training data. The results provide new evidence that contour integration can improve visual perception and complex scene understanding
    • …
    corecore