903 research outputs found

    Geometry Processing of Conventionally Produced Mouse Brain Slice Images

    Full text link
    Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as an application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data.Comment: 14 pages, 11 figure

    GEOMETRIC ANALYSIS TOOLS FOR MESH SEGMENTATION

    Get PDF
    Surface segmentation, a process which divides a surface into parts, is the basis for many surface manipulation applications which include model metamorphosis, model simplifica- tion, model retrieval, model alignment and texture mapping. This dissertation discusses novel methods for geometric surface analysis and segmentation and applications for these methods. Novel work within this dissertation includes a new 3D mesh segmentation algo- rithm which is referred to as the ridge-walking algorithm. The main benefit of this algo- rithm is that it can dynamically change the criteria it uses to identify surface parts which allows the algorithm to be adjusted to suit different types of surfaces and different segmen- tation goals. The dynamic segmentation behavior allows users to extract three different types of surface regions: (1) regions delineated by convex ridges, (2) regions delineated by concave valleys, and (3) regions delineated by both concave and convex curves. The ridge walking algorithm is quantitatively evaluated by comparing it with competing algo- rithms and human-generated segmentations. The evaluation is accompanied with a detailed geometrical analysis of a select subset of segmentation results to facilitate a better under- standing of the strengths and weaknesses of this algorithm. The ridge walking algorithm is applied to three domain-specific segmentation prob- lems. The first application uses this algorithm to partition bone fragment surfaces into three semantic parts: (1) the fracture surface, (2) the periosteal surface and (3) the articular surface. Segmentation of bone fragments is an important computational step necessary in developing quantitative methods for bone fracture analysis and for creating computational tools for virtual fracture reconstruction. The second application modifies the 3D ridge walking algorithm so that it can be applied to 2D images. In this case, the 2D image is modeled as a Monge patch and principal curvatures of the intensity surface are computed iv for each image pixel. These principal curvatures are then used by ridge walking algorithm to segment the image into meaningful parts. The third application uses the ridge walking algorithm to facilitate analysis of virtual 3D terrain models. Specifically, the algorithm is integrated as a part of a larger software system designed to enable users to browse, visualize and analyze 3D geometric data generated by NASA’s Mars Exploratory Rovers Spirit and Opportunity. In this context, the ridge walking algorithm is used to identify surface features such as rocks in the terrain models

    Automated Semantic Content Extraction from Images

    Get PDF
    In this study, an automatic semantic segmentation and object recognition methodology is implemented which bridges the semantic gap between low level features of image content and high level conceptual meaning. Semantically understanding an image is essential in modeling autonomous robots, targeting customers in marketing or reverse engineering of building information modeling in the construction industry. To achieve an understanding of a room from a single image we proposed a new object recognition framework which has four major components: segmentation, scene detection, conceptual cueing and object recognition. The new segmentation methodology developed in this research extends Felzenswalb\u27s cost function to include new surface index and depth features as well as color, texture and normal features to overcome issues of occlusion and shadowing commonly found in images. Adding depth allows capturing new features for object recognition stage to achieve high accuracy compared to the current state of the art. The goal was to develop an approach to capture and label perceptually important regions which often reflect global representation and understanding of the image. We developed a system by using contextual and common sense information for improving object recognition and scene detection, and fused the information from scene and objects to reduce the level of uncertainty. This study in addition to improving segmentation, scene detection and object recognition, can be used in applications that require physical parsing of the image into objects, surfaces and their relations. The applications include robotics, social networking, intelligence and anti-terrorism efforts, criminal investigations and security, marketing, and building information modeling in the construction industry. In this dissertation a structural framework (ontology) is developed that generates text descriptions based on understanding of objects, structures and the attributes of an image
    • …
    corecore