36 research outputs found

    Improved methods and system for watermarking halftone images

    Get PDF
    Watermarking is becoming increasingly important for content control and authentication. Watermarking seamlessly embeds data in media that provide additional information about that media. Unfortunately, watermarking schemes that have been developed for continuous tone images cannot be directly applied to halftone images. Many of the existing watermarking methods require characteristics that are implicit in continuous tone images, but are absent from halftone images. With this in mind, it seems reasonable to develop watermarking techniques specific to halftones that are equipped to work in the binary image domain. In this thesis, existing techniques for halftone watermarking are reviewed and improvements are developed to increase performance and overcome their limitations. Post-halftone watermarking methods work on existing halftones. Data Hiding Cell Parity (DHCP) embeds data in the parity domain instead of individual pixels. Data Hiding Mask Toggling (DHMT) works by encoding two bits in the 2x2 neighborhood of a pseudorandom location. Dispersed Pseudorandom Generator (DPRG), on the other hand, is a preprocessing step that takes place before image halftoning. DPRG disperses the watermark embedding locations to achieve better visual results. Using the Modified Peak Signal-to-Noise Ratio (MPSNR) metric, the proposed techniques outperform existing methods by up to 5-20%, depending on the image type and method considered. Field programmable gate arrays (FPGAs) are ideal for solutions that require the flexibility of software, while retaining the performance of hardware. Using VHDL, an FPGA based halftone watermarking engine was designed and implemented for the Xilinx Virtex XCV300. This system was designed for watermarking pre-existing halftones and halftones obtained from grayscale images. This design utilizes 99% of the available FPGA resources and runs at 33 MHz. Such a design could be applied to a scanner or printer at the hardware level without adversely affecting performance

    Robustness of a DFT based image watermarking method against am halftoning

    Get PDF
    U ovom radu je evaluirana otpornost na rastriranje metode označavanja slika bazirane na diskretnoj Fourierovoj transformaciji (DFT). Rastriranje se koristi za reprodukciju višetonskih slika. U istraživanju je korišten set od 1000 slika. Za rastriranje su korištena tri različita oblika rasterskog elementa (točka, elipsa i linija) i 5 različitih linijatura (10, 13, 15, 40 i 60 lin/cm). Evaluirana je vjerojatnost detekcije i distribucija postignutih vrijednosti detekcije. Rezultati su pokazali da je ispitivana metoda označavanja slika otporna na rastriranje linijaturama većim od 15 lin/cm. Također, zaključeno je da oblik rasterskog elementa ima slab utjecaj na stupanj detekcije.In this paper the robustness of a Discrete Fourier Transform (DFT) based image watermarking scheme to amplitude modulation (AM) halftoning is evaluated. Halftoning is used for reproduction of continuous images. Thus, it is important that a watermarking method is robust to halftoning. Three different shapes of clustered dots of AM (Amplitude Modulation) halftones are used (round, ellipse and line) with five different halftone frequencies (10, 13, 15, 40, and 60 line/cm). The tests where done on a dataset of 1000 images. As the metric of robustness, watermark detection rate, distribution of detection values, and ROC (Receiver Operation Characteristic) curves were used. The results showed that the watermarking scheme is robust to halftoning for halftone frequencies greater than 15 line/cm. Also, the type of AM halftone used has almost no effect on a detection rate

    A dual watermarking scheme for identity protection

    Get PDF
    A novel dual watermarking scheme with potential applications in identity protection, media integrity maintenance and copyright protection in both electronic and printed media is presented. The proposed watermarking scheme uses the owner’s signature and fingerprint as watermarks through which the ownership and validity of the media can be proven and kept intact. To begin with, the proposed watermarking scheme is implemented on continuous-tone/greyscale images, and later extended to images achieved via multitoning, an advanced version of halftoning-based printing. The proposed watermark embedding is robust and imperceptible. Experimental simulations and evaluations of the proposed method show excellent results from both objective and subjective view-points

    Robustness of a DFT based image watermarking method against am halftoning

    Get PDF
    U ovom radu je evaluirana otpornost na rastriranje metode označavanja slika bazirane na diskretnoj Fourierovoj transformaciji (DFT). Rastriranje se koristi za reprodukciju višetonskih slika. U istraživanju je korišten set od 1000 slika. Za rastriranje su korištena tri različita oblika rasterskog elementa (točka, elipsa i linija) i 5 različitih linijatura (10, 13, 15, 40 i 60 lin/cm). Evaluirana je vjerojatnost detekcije i distribucija postignutih vrijednosti detekcije. Rezultati su pokazali da je ispitivana metoda označavanja slika otporna na rastriranje linijaturama većim od 15 lin/cm. Također, zaključeno je da oblik rasterskog elementa ima slab utjecaj na stupanj detekcije.In this paper the robustness of a Discrete Fourier Transform (DFT) based image watermarking scheme to amplitude modulation (AM) halftoning is evaluated. Halftoning is used for reproduction of continuous images. Thus, it is important that a watermarking method is robust to halftoning. Three different shapes of clustered dots of AM (Amplitude Modulation) halftones are used (round, ellipse and line) with five different halftone frequencies (10, 13, 15, 40, and 60 line/cm). The tests where done on a dataset of 1000 images. As the metric of robustness, watermark detection rate, distribution of detection values, and ROC (Receiver Operation Characteristic) curves were used. The results showed that the watermarking scheme is robust to halftoning for halftone frequencies greater than 15 line/cm. Also, the type of AM halftone used has almost no effect on a detection rate

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique
    corecore