16,125 research outputs found

    Linear parameter-varying model to design control laws for an artificial pancreas

    Get PDF
    The contribution of this work is the generation of a control-oriented model for insulin-glucose dynamic regulation in type 1 diabetes mellitus (T1DM). The novelty of this model is that it includes the time-varying nature, and the inter-patient variability of the glucose-control problem. In addition, the model is well suited for well-known and standard controller synthesis procedures. The outcome is an average linear parameter-varying (LPV) model that captures the dynamics from the insulin delivery input to the glucose concentration output constructed based on the UVA/Padova metabolic simulator. Finally, a system-oriented reinterpretation of the classical ad-hoc 1800 rule is applied to adapt the model's gain. The effectiveness of this approach is quantified both in open- and closed-loop. The first one by computing the root mean square error (RMSE) between the glucose deviation predicted by the proposed model and the UVA/Padova one. The second measure is determined by using the ν-gap as a metric to determine distance, in terms of closed-loop performance, between both models. For comparison purposes, both open- (RMSE) and closed-loop (ν-gap metric) quality indicators are also computed for other control-oriented models previously presented. This model allows the design of LPV controllers in a straightforward way, considering its affine dependence on the time-varying parameter, which can be computed in real-time. Illustrative simulations are included. In addition, the presented modeling strategy was employed in the design of an artificial pancreas (AP) control law that successfully withstood rigorous testing using the UVA/Padova simulator, and that was subsequently deployed in a clinical trial campaign where five adults remained in closed-loop for 36 h. This was the first ever fully closed-loop clinical AP trial in Argentina, and the modeling strategy presented here is considered instrumental in resulting in a very successful clinical outcome.Fil: Colmegna, Patricio Hernán. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sánchez Peña, Ricardo S.. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gondhalekar, R.. Harvard University; Estados Unido

    Identifiability of Control-Oriented Glucose-Insulin Linear Models: Review and Analysis

    Get PDF
    One of the main challenges of glucose control in patients with type 1 diabetes is identifying a control-oriented model that reliably predicts the behavior of glycemia. Here, a review is provided emphasizing the structural identifiability and observability properties, which surprisingly reveals that few of them are globally identifiable and observable at the same time. Thus, a general proposal was developed to encompass four linear models according to suitable assumptions and transformations. After the corresponding structural properties analysis, two minimal model structures are generated, which are globally identifiable and observable. Then, the practical identifiability is analyzed for this application showing that the standard collected data in many cases do not have the necessary quality to ensure a unique solution in the identification process even when a considerable amount of data is collected. The two minimal control-oriented models were identified using a standard identification procedure using data from 30 virtual patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The identification was performed in two stages: calibration and validation. In the first stage, the average length was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients. For the second stage, a one-day validation window was considered long enough for future artificial pancreas applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and 36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction models in model-based control strategies as predictive control.Fil: Hoyos, J. D.. Universidad Nacional de Colombia. Sede Medellín; ColombiaFil: Villa Tamayo, M. F.. Universidad Nacional de Colombia. Sede Medellín; ColombiaFil: Builes Montano, C. E.. Universidad de Antioquia; ColombiaFil: Ramirez Rincon, A.. Universidad Pontificia Bolivariana; ColombiaFil: Godoy, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Garcia Tirado, J.. University of Virginia; Estados UnidosFil: Rivadeneira Paz, Pablo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms

    Full text link
    ABSTRACT Diabetes Mellitus (DM) embraces a group of metabolic diseases which main characteristic is the presence of high glucose levels in blood. It is one of the diseases with major social and health impact, both for its prevalence and also the consequences of the chronic complications that it implies. One of the research lines to improve the quality of life of people with diabetes is of technical focus. It involves several lines of research, including the development and improvement of devices to estimate "online" plasma glucose: continuous glucose monitoring systems (CGMS), both invasive and non-invasive. These devices estimate plasma glucose from sensor measurements from compartments alternative to blood. Current commercially available CGMS are minimally invasive and offer an estimation of plasma glucose from measurements in the interstitial fluid CGMS is a key component of the technical approach to build the artificial pancreas, aiming at closing the loop in combination with an insulin pump. Yet, the accuracy of current CGMS is still poor and it may partly depend on low performance of the implemented Calibration Algorithm (CA). In addition, the sensor-to-patient sensitivity is different between patients and also for the same patient in time. It is clear, then, that the development of new efficient calibration algorithms for CGMS is an interesting and challenging problem. The indirect measurement of plasma glucose through interstitial glucose is a main confounder of CGMS accuracy. Many components take part in the glucose transport dynamics. Indeed, physiology might suggest the existence of different local behaviors in the glucose transport process. For this reason, local modeling techniques may be the best option for the structure of the desired CA. Thus, similar input samples are represented by the same local model. The integration of all of them considering the input regions where they are valid is the final model of the whole data set. Clustering is tBarceló Rico, F. (2012). Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17173Palanci

    Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care

    Get PDF
    Hyperglycaemia is prevalent in critical illness and increases the risk of further complications and mortality, while tight control can reduce mortality up to 43%. Adaptive control methods are capable of highly accurate, targeted blood glucose regulation using limited numbers of manual measurements due to patient discomfort and labour intensity. Therefore, the option to obtain greater data density using emerging continuous glucose sensing devices is attractive. However, the few such systems currently available can have errors in excess of 20-30%. In contrast, typical bedside testing kits have errors of approximately 7-10%. Despite greater measurement frequency larger errors significantly impact the resulting glucose and patient specific parameter estimates, and thus the control actions determined creating an important safety and performance issue. This paper models the impact of the Continuous Glucose Monitoring System (CGMS, Medtronic, Northridge, CA) on model-based parameter identification and glucose prediction. An integral-based fitting and filtering method is developed to reduce the effect of these errors. A noise model is developed based on CGMS data reported in the literature, and is slightly conservative with a mean Clarke Error Grid (CEG) correlation of R=0.81 (range: 0.68-0.88) as compared to a reported value of R=0.82 in a critical care study. Using 17 virtual patient profiles developed from retrospective clinical data, this noise model was used to test the methods developed. Monte-Carlo simulation for each patient resulted in an average absolute one-hour glucose prediction error of 6.20% (range: 4.97-8.06%) with an average standard deviation per patient of 5.22% (range: 3.26-8.55%). Note that all the methods and results are generalisable to similar applications outside of critical care, such as less acute wards and eventually ambulatory individuals. Clinically, the results show one possible computational method for managing the larger errors encountered in emerging continuous blood glucose sensors, thus enabling their more effective use in clinical glucose regulation studies

    Robust strategies for glucose control in type 1 diabetes

    Full text link
    [EN] Type 1 diabetes mellitus is a chronic and incurable disease that affects millions of people all around the world. Its main characteristic is the destruction (totally or partially) of the beta cells of the pancreas. These cells are in charge of producing insulin, main hormone implied in the control of blood glucose. Keeping high levels of blood glucose for a long time has negative health effects, causing different kinds of complications. For that reason patients with type 1 diabetes mellitus need to receive insulin in an exogenous way. Since 1921 when insulin was first isolated to be used in humans and first glucose monitoring techniques were developed, many advances have been done in clinical treatment with insulin. Currently 2 main research lines focused on improving the quality of life of diabetic patients are opened. The first one is concentrated on the research of stem cells to replace damaged beta cells and the second one has a more technological orientation. This second line focuses on the development of new insulin analogs to allow emulating with higher fidelity the endogenous pancreas secretion, the development of new noninvasive continuous glucose monitoring systems and insulin pumps capable of administering different insulin profiles and the use of decision-support tools and telemedicine. The most important challenge the scientific community has to overcome is the development of an artificial pancreas, that is, to develop algorithms that allow an automatic control of blood glucose. The main difficulty avoiding a tight glucose control is the high variability found in glucose metabolism. This fact is especially important during meal compensation. This variability, together with the delay in subcutaneous insulin absorption and action causes controller overcorrection that leads to late hypoglycemia (the most important acute complication of insulin treatment). The proposals of this work pay special attention to overcome these difficulties. In that way interval models are used to represent the patient physiology and to be able to take into account parametric uncertainty. This type of strategy has been used in both the open loop proposal for insulin dosage and the closed loop algorithm. Moreover the idea behind the design of this last proposal is to avoid controller overcorrection to minimize hypoglycemia while adding robustness against glucose sensor failures and over/under- estimation of meal carbohydrates. The algorithms proposed have been validated both in simulation and in clinical trials.[ES] La diabetes mellitus tipo 1 es una enfermedad crónica e incurable que afecta a millones de personas en todo el mundo. Se caracteriza por una destrucción total o parcial de las células beta del páncreas. Estas células son las encargadas de producir la insulina, hormona principal en el control de glucosa en sangre. Valores altos de glucosa en la sangre mantenidos en el tiempo afectan negativamente a la salud, provocando complicaciones de diversa índole. Es por eso que los pacientes con diabetes mellitus tipo 1 necesitan recibir insulina de forma exógena. Desde que se consiguiera en 1921 aislar la insulina para poder utilizarla en clínica humana, y se empezaran a desarrollar las primeras técnicas de monitorización de glucemia, se han producido grandes avances en el tratamiento con insulina. Actualmente, las líneas de investigación que se están siguiendo en relación a la mejora de la calidad de vida de los pacientes diabéticos, tienen fundamentalmente 2 vertientes: una primera que se centra en la investigación en células madre para la reposición de las células beta y una segunda vertiente de carácter más tecnológico. Dentro de esta segunda vertiente, están abiertas varias líneas de investigación, entre las que se encuentran el desarrollo de nuevos análogos de insulina que permitan emular más fielmente la secreción endógena del páncreas, el desarrollo de monitores continuos de glucosa no invasivos, bombas de insulina capaces de administrar distintos perfiles de insulina y la inclusión de sistemas de ayuda a la decisión y telemedicina. El mayor reto al que se enfrentan los investigadores es el de conseguir desarrollar un páncreas artificial, es decir, desarrollar algoritmos que permitan disponer de un control automático de la glucosa. La principal barrera que se encuentra para conseguir un control riguroso de la glucosa es la alta variabilidad que presenta su metabolismo. Esto es especialmente significativo durante la compensación de las comidas. Esta variabilidad junto con el retraso en la absorción y actuación de la insulina administrada de forma subcutánea favorece la aparición de hipoglucemias tardías (complicación aguda más importante del tratamiento con insulina) a consecuencia de la sobreactuación del controlador. Las propuestas presentadas en este trabajo hacen especial hincapié en sobrellevar estas dificultades. Así, se utilizan modelos intervalares para representar la fisiología del paciente, y poder tener en cuenta la incertidumbre en sus parámetros. Este tipo de estrategia se ha utilizado tanto en la propuesta de dosificación automática en lazo abierto como en el algoritmo en lazo cerrado. Además la principal idea de diseño de esta última propuesta es evitar la sobreactuación del controlador evitando hipoglucemias y añadiendo robustez ante fallos en el sensor de glucosa y en la estimación de las comidas. Los algoritmos propuestos han sido validados en simulación y en clínica.[CA] La diabetis mellitus tipus 1 és una malaltia crònica i incurable que afecta milions de persones en tot el món. Es caracteritza per una destrucció total o parcial de les cèl.lules beta del pàncrees. Aquestes cèl.lules són les encarregades de produir la insulina, hormona principal en el control de glucosa en sang. Valors alts de glucosa en la sang mantinguts en el temps afecten negativament la salut, provocant complicacions de diversa índole. És per això que els pacients amb diabetis mellitus tipus 1 necessiten rebre insulina de forma exògena. Des que s'aconseguís en 1921 aïllar la insulina per a poder utilitzar-la en clínica humana, i es començaren a desenrotllar les primeres tècniques de monitorització de glucèmia, s'han produït grans avanços en el tractament amb insulina. Actualment, les línies d'investigació que s'estan seguint en relació a la millora de la qualitat de vida dels pacients diabètics, tenen fonamentalment 2 vessants: un primer que es centra en la investigació de cèl.lules mare per a la reposició de les cèl.lules beta i un segon vessant de caràcter més tecnològic. Dins d' aquest segon vessant, estan obertes diverses línies d'investigació, entre les que es troben el desenrotllament de nous anàlegs d'insulina que permeten emular més fidelment la secreció del pàncrees, el desenrotllament de monitors continus de glucosa no invasius, bombes d'insulina capaces d'administrar distints perfils d'insulina i la inclusió de sistemes d'ajuda a la decisió i telemedicina. El major repte al què s'enfronten els investigadors és el d'aconseguir desenrotllar un pàncrees artificial, és a dir, desenrotllar algoritmes que permeten disposar d'un control automàtic de la glucosa. La principal barrera que es troba per a aconseguir un control rigorós de la glucosa és l'alta variabilitat que presenta el seu metabolisme. Açò és especialment significatiu durant la compensació dels menjars. Aquesta variabilitat junt amb el retard en l'absorció i actuació de la insulina administrada de forma subcutània afavorix l'aparició d'hipoglucèmies tardanes (complicació aguda més important del tractament amb insulina) a conseqüència de la sobreactuació del controlador. Les propostes presentades en aquest treball fan especial insistència en suportar aquestes dificultats. Així, s'utilitzen models intervalares per a representar la fisiologia del pacient, i poder tindre en compte la incertesa en els seus paràmetres. Aquest tipus d'estratègia s'ha utilitzat tant en la proposta de dosificació automàtica en llaç obert com en l' algoritme en llaç tancat. A més, la principal idea de disseny d'aquesta última proposta és evitar la sobreactuació del controlador evitant hipoglucèmies i afegint robustesa.Revert Tomás, A. (2015). Robust strategies for glucose control in type 1 diabetes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56001TESI

    Low-Complexity MISO Models of T1DM Glucose Metabolism

    Get PDF

    Modeling and Prediction in Diabetes Physiology

    Get PDF
    Diabetes is a group of metabolic diseases characterized by the inability of the organism to autonomously regulate the blood glucose levels. It requires continuing medical care to prevent acute complications and to reduce the risk of long-term complications. Inadequate glucose control is associated with damage, dysfunction and failure of various organs. The management of the disease is non trivial and demanding. With today’s standards of current diabetes care, good glucose regulation needs constant attention and decision-making by the individuals with diabetes. Empowering the patients with a decision support system would, therefore, improve their quality of life without additional burdens nor replacing human expertise. This thesis investigates the use of data-driven techniques to the purpose of glucose metabolism modeling and short-term blood-glucose predictions in Type I Diabetes Mellitus (T1DM). The goal was to use models and predictors in an advisory tool able to produce personalized short-term blood glucose predictions and on-the-spot decision making concerning the most adequate choice of insulin delivery, meal intake and exercise, to help diabetic subjects maintaining glycemia as close to normal as possible. The approaches taken to describe the glucose metabolism were discrete-time and continuous-time models on input-output form and statespace form, while the blood glucose short-term predictors, i.e., up to 120 minutes ahead, used ARX-, ARMAX- and subspace-based prediction

    Model Predictive Control Algorithms for Pen and Pump Insulin Administration

    Get PDF
    corecore