128,419 research outputs found

    A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes

    Get PDF
    We present a construction of a family of continuous-time ARMA processes based on p iterations of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The construction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-Uhlenbeck processes all driven by the same L´evy process. This provides a straightforward computation of covariances, a state-space model representation and methods for estimating parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be an ARMA(p, p-1) process. We propose methods for estimating the parameters of the iterated Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy process, and show simulations and applications to real data.Peer ReviewedPostprint (published version

    On a flexible construction of a negative binomial model

    Get PDF
    This work presents a construction of stationary Markov models with negative-binomial marginal distributions. A simple closed form expression for the corresponding transition probabilities is given, linking the proposal to well-known classes of birth and death processes and thus revealing interesting characterizations. The advantage of having such closed form expressions is tested on simulated and real data.Comment: Forthcoming in "Statistics & Probability Letters

    A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes

    Get PDF
    We present a construction of a family of continuous-time ARMA processes based on p iterations of the linear operator that maps a Lévy process onto an Ornstein-Uhlenbeck process. The construction resembles the procedure to build an AR(p) from an AR(1). We show that this family is in fact a subfamily of the well-known CARMA(p,q) processes, with several interesting advantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-Uhlenbeck processes all driven by the same L´evy process. This provides a straightforward computation of covariances, a state-space model representation and methods for estimating parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be an ARMA(p, p-1) process. We propose methods for estimating the parameters of the iterated Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Lévy process, and show simulations and applications to real data.Peer ReviewedPostprint (published version

    Generalizing the first-difference correlated random walk for marine animal movement data

    Get PDF
    Animal telemetry data are often analysed with discrete time movement models assuming rotation in the movement. These models are defined with equidistant distant time steps. However, telemetry data from marine animals are observed irregularly. To account for irregular data, a time-irregularised first-difference correlated random walk model with drift is introduced. The model generalizes the commonly used first-difference correlated random walk with regular time steps by allowing irregular time steps, including a drift term, and by allowing different autocorrelation in the two coordinates. The model is applied to data from a ringed seal collected through the Argos satellite system, and is compared to related movement models through simulations. Accounting for irregular data in the movement model results in accurate parameter estimates and reconstruction of movement paths. Measured by distance, the introduced model can provide more accurate movement paths than the regular time counterpart. Extracting accurate movement paths from uncertain telemetry data is important for evaluating space use patterns for marine animals, which in turn is crucial for management. Further, handling irregular data directly in the movement model allows efficient simultaneous analysis of several animals
    corecore