6,064 research outputs found

    Effects of prescribed fire on Cope’s Gray Treefrog (Hyla chrysoscelis) across habitat scales and life stages

    Get PDF
    Fire may alter both aquatic and terrestrial habitat used by all amphibian life stages, yet, our knowledge of its effects on amphibians is primarily limited to adult responses. I present an integrated approach to test the response of Cope’s Gray Treefrog (Hyla chrysoscelis) to fire by examining responses in tadpole performance and survivorship, adult abundance, and oviposition. Tadpoles raised with burned leaf litter had similar survival, but total mass and total length were 440% and 170% greater, respectively, for tadpoles raised in unburned litter. I assessed terrestrial and aquatic oviposition cues by embedding burned and unburned litter treatments within burned and unburned terrestrial plots. Oviposition was an order of magnitude higher in unburned plots, regardless of the litter treatment. This difference was not statistically significant or driven by adult abundance. My results indicate the need to explore the dynamic effects forest management practices can have on amphibians across life stages

    Forest Succession and Amphibian Migrations: Implications for Landscape Connectivity

    Get PDF
    Conservation of forest-dependent amphibians is dependent on finding a balance between timber management and species’ habitat requirements. Accurate predictions of the response of amphibian communities to disturbance rely on a good understanding of the scales at which ecological processes affect distribution and abundance through space and time. I investigated the response of 14 species to four different forestry treatments (partial harvest, clearcut with coarse woody debris [CWD] removed, clearcut with CWD retained, and uncut control) over a six-year period, using 2.1-ha experimental treatments. Forest amphibians showed a strong negative response to complete canopy removal at a broad spatial scale, but site-specific variation in the use of forestry treatments was the norm at a finer scale. Four forest-dependent species showed substantial declines in abundance beginning at 2 – 3 years post-disturbance. Avoidance of clearcuts by forest species and site-specific patterns of habitat use were maintained throughout the study. 2 Incipient vegetative succession and retaining CWD did not mitigate the effects of clearcutting; I found only a modest positive effect of succession on habitat use by emigrating juvenile wood frogs (Lithobates sylvaticus). I studied the permeability to juvenile wood frogs movements of four forestry treatments (recent clearcut, mature forest, 11-year-old conifers, and 20-year-old natural regeneration). I conducted experimental releases in 50 x 3 m terrestrial enclosures built in each treatment. Recent clearcuts and young coniferous stands were significant barriers to movements, and were three times less permeable to movement compared to the mature forest and 20-year-old regeneration. In addition, I found that juvenile wood frogs reared in semi-matural conditions did not show inherited directionality upon emergence, rely on proximate cues for orientation, and avoided forested wetland cues. Vegetative succession in young stands (5-6-year-old) mitigated the effects of clearcutting on microclimate, but juvenile wood frogs strongly avoided these stands. Thus, microclimate cannot be used as a sole parameter to predict potential habitat use by amphibians. Closed-canopy habitat was preferred by all terrestrial life stages of forest amphibians. A viable forest management strategy is to plan for spatially and temporally-structured harvests that retain canopy between high-quality breeding sites, and avoid clearcutting and conversion to conifer plantations

    Interactive effects of wildfire and disturbance history on amphibians and their parasites

    Get PDF
    Climate-driven changes in wildfire and other disturbance regimes are expected to affect populations and communities worldwide. Understanding how these changes will affect native species is critical for future conservation efforts, especially on managed forests. Using data from several wildfires that burned between 1988 and 2003 in and next to Glacier National Park, Montana, I examined how fire affected the distribution, abundance, and infection status of 3 native amphibians. In Chapter 1, I used long-term data on wetland occupancy to show the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris) were resistant to change during the first 6 years after wildfire, but declined over longer time periods in areas of high-severity fire. In contrast, boreal toad (Anaxyrus boreas) occupancy increased greatly during the 3 years after wildfire burned low-elevation forests, followed by a gradual decline. In Chapter 2, I measured how the interaction of stand-replacement wildfire and forest management affected amphibian abundance and 2 nematodes that infect amphibians. Population size of salamanders was negatively related to fire severity, with stronger effects on populations that were isolated or in managed forests. These effects were not evident in the abundance of the nematode Cosmocercoides variabilis. Population size of spotted frogs increased weakly with burn extent in managed and protected forests, a pattern that was reflected in the greater infection intensity of the mutualistic nematode Gyrinicola batrachiensis. In Chapter 3, I investigated how environmental variation and habitat use affects the probability that boreal toads had chytridiomycosis, a disease linked with amphibian declines worldwide. Probability of infection was lower for toads captured terrestrially than aquatically, and was lower for toads captured in recently burned habitats compared with unburned habitats. Simulations showed that spatial variation in infection, like that related to habitat use in a heterogeneous landscape, could significantly reduce the risk of metapopulation decline. Collectively, my results underscore the importance of measuring individual-, population-, and community-level responses across a range of disturbances and in both managed and protected forests. These results will provide scientists and land managers a greater understanding of the long-term effects of wildfire on local amphibians and other native species

    Nutrient availability and invasive fish jointly drive community dynamics in an experimental aquatic system

    Full text link
    Species invasions increasingly occur alongside other forms of ecosystem change, highlighting the need to understand how invasion outcomes are influenced by environmental factors. Within freshwaters, two of the most widespread drivers of change are introduced fishes and nutrient loading, yet it remains difficult to predict how interactions between these drivers affect invasion success and consequences for native communities. To test competing theories about interactions between nutrients and invasions, we conducted a 2 × 3 factorial mesocosm experiment, varying western mosquitofish (Gambusia affinis) presence and nutrient availability within aquatic communities. Based on theory, increased nutrients could either (1) facilitate coexistence between predatory mosquitofish and native species by increasing prey availability (the invader attenuation hypothesis) or (2) strengthen predation effects by enhancing fish productivity more than native community members (the invader amplification hypothesis). In outdoor mesocosms designed to mimic observed nutrient conditions and local community structure, mosquitofish directly reduced the abundances of zooplankton and three native amphibian species, leading to indirect increases in phytoplankton, periphyton, and freshwater snail biomass through trophic cascades. Nutrient additions increased native amphibian growth but had especially pronounced effects on the productivity of invasive mosquitofish. The elevated nutrient condition supported ~5 times more juvenile mosquitofish and 30% higher biomass than the low nutrient condition. Increased nutrients levels did not weaken the top‐down effects of mosquitofish on invertebrates or amphibians. Collectively, our results support the invader amplification hypothesis, suggesting that increased nutrient loading may benefit invasive species without attenuating their undesirable effects on native community members.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/1/ecs22153_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/2/ecs22153.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143635/3/ecs22153-sup-0001-AppendixS1.pd

    Applying Conservation Genomic Techniques to Guide Management of the Reticulated Flatwoods Salamander (Ambystoma bishopi)

    Get PDF
    The Reticulated flatwoods salamander (Ambystoma bishopi) is a federally endangered amphibian endemic to the longleaf-pine ecosystem of the southeastern U.S. This study used analyses of single-nucleotide polymorphism (SNP) data, collected from 2,255 unique individuals across 5 breeding seasons, spread across the known extant range of A. bishopi, to characterize the genetic diversity and demographics of populations, genetic relationships among populations, and patterns and spatial extents of gene flow, and to evaluate potential effects of management on A. bishopi’s resiliency. Population structure was strongly hierarchical, with individual breeding ponds (n = 38) acting as semi-connected subpopulations within five regional metapopulations (Mayhaw in Georgia; Oglesby, Eastbay, Garcon, and Escribano in Florida). Likewise, gene flow among populations was scale-dependent: negligible genetic differentiation, indicative of high gene flow, was observed only between pairs of ponds separated by \u3c 0.5 km, whereas between 0.5 and 5 km I observed steep genetic isolation by distance, and beyond 5 km genetic differentiation was generally high and only weakly related to distance. Across several breeding seasons, the effective number of breeders (Nb) per pond per year averaged 26 individuals (range 4 to 104). Larger-area, slower-drying ponds located closer to other occupied ponds exhibited larger Nb and greater genetic diversity. Based on genetically-reconstructed pedigrees, the ongoing headstarting program at Escribano successfully captured 97.9% of the estimated total number of alleles, but only 63% of the total number families, in each cohort. Based on these results, I recommend the following: 1) Given its genetic distinctiveness, Georgia populations merit elevated priority for protection and restoration. 2) Resiliency and redundancy (a la the species’ recovery plan) should be assessed at the spatial grain of individual breeding ponds. 3) Attempts to restore habitat connectivity should consider dispersal over distances \u3e 500 m to be relatively unlikely. 4) Finally, to the extent that headstarted individuals are used to augment existing or introduce new populations, managers should consider the potential risks of founder effects, and reduce these risks by creating genetically and demographically diverse headstart samples, for example by maximizing the diversity of egg/larva collections over time and space within ponds

    Recovery of Amphibian and Reptile Communities During Tropical Secondary Forest Succession

    Get PDF
    The extensive clearing and modification of natural systems from anthropogenic activities is a pressing global concern. Forest habitats and animal communities within forests are among the most highly impacted, globally. Forest destruction has been repeatedly documented as a driver of biodiversity loss. However, little is known about how animal communities respond when altered landscapes are abandoned and left to regenerate into secondary forests. It is thought that the regrowth of secondary forests may help reverse biodiversity loss by restoring habitats to similar conditions as prior to land conversion. Of the forest cover that remains, over half is secondary forest, and in many countries secondary forest cover has been steadily increasing. Therefore, it is important to understand how and if faunal communities recover during secondary forest regeneration. I combined meta-analytic, field-survey-based, and lab-based experimental techniques to determine how amphibians and reptiles respond to habitat change in general, and secondary forest regeneration on landscapes previously cleared for use as pasture. I addressed five specific questions: 1) what are the effects of habitat alteration on amphibians and reptiles?, 2) what are the effects of secondary forest succession on amphibians and reptiles?, 3) what is the relative importance of stochastic and deterministic effects on community assembly during secondary forest succession?, 4) how do amphibian and reptile species composition, probability of occurrence, and species richness change over the course of secondary forest succession?, and 5) is thermal quality of habitat an important mechanism of species response to secondary forest succession? I found that secondary forest has high conservation value for many amphibian and reptile species, environmental changes associated with secondary forest succession have a significant effect on shaping amphibian and reptile community composition, thermal quality is an important mechanism for species response and that strength of response is mediated by species-specific thermal biology. I also highlight the importance of riparian corridors in maintaining species diversity in modified habitats

    The role of forest harvesting and subsequent vegetative regrowth

    Get PDF
    Conservation of forest-dependent amphibians is dependent on finding a balance between timber management and species’ habitat requirements. To examine the effect of short-term vegetative regrowth post-harvesting on amphibian habitat use, we studied the response of eight species (four forest specialists and four habitat generalists) to four forestry treatments (partial harvest, clearcut with coarse woody debris [CWD] removed, clearcut with CWD retained, and uncut control) over a 6-year period, using replicated experimental treatments in Maine, USA. Forest amphibians showed a strong negative response to clearcutting through the duration of the study, regardless of the presence of CWD, but only during the post-breeding season (i.e., summer). The spring breeding migrations of wood frogs and spotted salamanders to experimental pools were not affected by the forestry treatments. The use of partial cut treatments by forest amphibians differed between animals emerging from experimental pools (i.e., juvenile wood frogs and spotted salamanders), and animals originating from outside the experimental arrays (i.e., adults of all forest species, juvenile wood frogs and spotted salamanders). Animals emerging from our experimental pools showed no difference in the use of control and partial cut treatments, while all the other animals preferred control plots. In addition, we found a modest increase in the use of clearcuts over the 6 years following harvesting by juvenile wood frogs from experimental pools (from an 8-fold difference between forest and clearcut treatments in the first year post-clearcutting to a 3-fold difference during years 3–5). However, this increase was not significantly associated with vegetation regrowth. Forest specialists declined in abundance in all treatments beginning 2–3 years post-disturbance. Despite high yearly fluctuations in abundance, there was a shift in relative abundance towards habitat generalist species, most notably green frog juveniles. Most habitat generalist species were not affected by clearcutting or vegetative regrowth; however, we observed a lower use of clearcut treatments by green frogs starting 3 years post-harvesting, perhaps due to an increase in habitat resistance to movements associated with vegetative regrowth. These general patterns of habitat use were overridden at the local scale by site-specific variation in the use of forestry treatments, most evident in emigrating juvenile wood frogs. From a management standpoint, implementing broad silvicultural prescriptions could be a viable strategy in extensively forested landscapes, but local variation in habitat use has to be acknowledged when managers focus on a limited area
    • 

    corecore