96,729 research outputs found

    A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict

    Full text link
    The focus of this paper is an approach to the modeling of longitudinal social network or relational data. Such data arise from measurements on pairs of objects or actors made at regular temporal intervals, resulting in a social network for each point in time. In this article we represent the network and temporal dependencies with a random effects model, resulting in a stochastic process defined by a set of stationary covariance matrices. Our approach builds upon the social relations models of Warner, Kenny and Stoto [Journal of Personality and Social Psychology 37 (1979) 1742--1757] and Gill and Swartz [Canad. J. Statist. 29 (2001) 321--331] and allows for an intra- and inter-temporal representation of network structures. We apply the methodology to two longitudinal data sets: international trade (continuous response) and militarized interstate disputes (binary response).Comment: Published in at http://dx.doi.org/10.1214/10-AOAS403 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust training of recurrent neural networks to handle missing data for disease progression modeling

    Get PDF
    Disease progression modeling (DPM) using longitudinal data is a challenging task in machine learning for healthcare that can provide clinicians with better tools for diagnosis and monitoring of disease. Existing DPM algorithms neglect temporal dependencies among measurements and make parametric assumptions about biomarker trajectories. In addition, they do not model multiple biomarkers jointly and need to align subjects' trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. We, therefore, propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle missing values in both target and predictor variables. This algorithm is applied for modeling the progression of Alzheimer's disease (AD) using magnetic resonance imaging (MRI) biomarkers. The results show that the proposed LSTM algorithm achieves a lower mean absolute error for prediction of measurements across all considered MRI biomarkers compared to using standard LSTM networks with data imputation or using a regression-based DPM method. Moreover, applying linear discriminant analysis to the biomarkers' values predicted by the proposed algorithm results in a larger area under the receiver operating characteristic curve (AUC) for clinical diagnosis of AD compared to the same alternatives, and the AUC is comparable to state-of-the-art AUCs from a recent cross-sectional medical image classification challenge. This paper shows that built-in handling of missing values in LSTM network training paves the way for application of RNNs in disease progression modeling.Comment: 9 pages, 1 figure, MIDL conferenc
    corecore