2,498 research outputs found

    Integrating expert-based objectivist and nonexpert-based subjectivist paradigms in landscape assessment

    Get PDF
    This thesis explores the integration of objective and subjective measures of landscape aesthetics, particularly focusing on crowdsourced geo-information. It addresses the increasing importance of considering public perceptions in national landscape governance, in line with the European Landscape Convention's emphasis on public involvement. Despite this, national landscape assessments often remain expert-centric and top-down, facing challenges in resource constraints and limited public engagement. The thesis leverages Web 2.0 technologies and crowdsourced geographic information, examining correlations between expert-based metrics of landscape quality and public perceptions. The Scenic-Or-Not initiative for Great Britain, GIS-based Wildness spatial layers, and LANDMAP dataset for Wales serve as key datasets for analysis. The research investigates the relationships between objective measures of landscape wildness quality and subjective measures of aesthetics. Multiscale geographically weighted regression (MGWR) reveals significant correlations, with different wildness components exhibiting varying degrees of association. The study suggests the feasibility of incorporating wildness and scenicness measures into formal landscape aesthetic assessments. Comparing expert and public perceptions, the research identifies preferences for water-related landforms and variations in upland and lowland typologies. The study emphasizes the agreement between experts and non-experts on extreme scenic perceptions but notes discrepancies in mid-spectrum landscapes. To overcome limitations in systematic landscape evaluations, an integrative approach is proposed. Utilizing XGBoost models, the research predicts spatial patterns of landscape aesthetics across Great Britain, based on the Scenic-Or-Not initiatives, Wildness spatial layers, and LANDMAP data. The models achieve comparable accuracy to traditional statistical models, offering insights for Landscape Character Assessment practices and policy decisions. While acknowledging data limitations and biases in crowdsourcing, the thesis discusses the necessity of an aggregation strategy to manage computational challenges. Methodological considerations include addressing the modifiable areal unit problem (MAUP) associated with aggregating point-based observations. The thesis comprises three studies published or submitted for publication, each contributing to the understanding of the relationship between objective and subjective measures of landscape aesthetics. The concluding chapter discusses the limitations of data and methods, providing a comprehensive overview of the research

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    A Critical Review Of Post-Secondary Education Writing During A 21st Century Education Revolution

    Get PDF
    Educational materials are effective instruments which provide information and report new discoveries uncovered by researchers in specific areas of academia. Higher education, like other education institutions, rely on instructional materials to inform its practice of educating adult learners. In post-secondary education, developmental English programs are tasked with meeting the needs of dynamic populations, thus there is a continuous need for research in this area to support its changing landscape. However, the majority of scholarly thought in this area centers on K-12 reading and writing. This paucity presents a phenomenon to the post-secondary community. This research study uses a qualitative content analysis to examine peer-reviewed journals from 2003-2017, developmental online websites, and a government issued document directed toward reforming post-secondary developmental education programs. These highly relevant sources aid educators in discovering informational support to apply best practices for student success. Developmental education serves the purpose of addressing literacy gaps for students transitioning to college-level work. The findings here illuminate the dearth of material offered to developmental educators. This study suggests the field of literacy research is fragmented and highlights an apparent blind spot in scholarly literature with regard to English writing instruction. This poses a quandary for post-secondary literacy researchers in the 21st century and establishes the necessity for the literacy research community to commit future scholarship toward equipping college educators teaching writing instruction to underprepared adult learners

    Digital support for alcohol moderation and smoking cessation in cancer survivors

    Get PDF

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit
    • …
    corecore