3,234 research outputs found

    Random numbers from the tails of probability distributions using the transformation method

    Get PDF
    The speed of many one-line transformation methods for the production of, for example, Levy alpha-stable random numbers, which generalize Gaussian ones, and Mittag-Leffler random numbers, which generalize exponential ones, is very high and satisfactory for most purposes. However, for the class of decreasing probability densities fast rejection implementations like the Ziggurat by Marsaglia and Tsang promise a significant speed-up if it is possible to complement them with a method that samples the tails of the infinite support. This requires the fast generation of random numbers greater or smaller than a certain value. We present a method to achieve this, and also to generate random numbers within any arbitrary interval. We demonstrate the method showing the properties of the transform maps of the above mentioned distributions as examples of stable and geometric stable random numbers used for the stochastic solution of the space-time fractional diffusion equation.Comment: 17 pages, 7 figures, submitted to a peer-reviewed journa

    Methods for generating variates from probability distributions

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Diverse probabilistic results are used in the design of random univariate generators. General methods based on these are classified and relevant theoretical properties derived. This is followed by a comparative review of specific algorithms currently available for continuous and discrete univariate distributions. A need for a Zeta generator is established, and two new methods, based on inversion and rejection with a truncated Pareto envelope respectively are developed and compared. The paucity of algorithms for multivariate generation motivates a classification of general methods, and in particular, a new method involving envelope rejection with a novel target distribution is proposed. A new method for generating first passage times in a Wiener Process is constructed. This is based on the ratio of two random numbers, and its performance is compared to an existing method for generating inverse Gaussian variates. New "hybrid" algorithms for Poisson and Negative Binomial distributions are constructed, using an Alias implementation, together with a Geometric tail procedure. These are shown to be robust, exact and fast for a wide range of parameter values. Significant modifications are made to Atkinson's Poisson generator (PA), and the resulting algorithm shown to be complementary to the hybrid method. A new method for Von Mises generation via a comparison of random numbers follows, and its performance compared to that of Best and Fisher's Wrapped Cauchy rejection method. Finally new methods are proposed for sampling from distribution tails, using optimally designed Exponential envelopes. Timings are given for Gamma and Normal tails, and in the latter case the performance is shown to be significantly better than Marsaglia's tail generation procedure.Governors of Dundee College of Technolog
    • …
    corecore