936 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    ENHANCEMENT AND COMPARISON OF ANT COLONY OPTIMIZATION FOR SOFTWARE RELIABILITY MODELS

    Get PDF
    In Common parlance, the traditional software reliability estimation methods often rely on assumptions like statistical distributions that are often dubious and unrealistic. The ability to predict the number of faults during development phase and a proper testing process helps in specifying timely release of software and efficient management of project resources. In the Present Study Enhancement and Comparison of Ant Colony Optimization Methods for Software Reliability Models are studied and the estimation accuracy was calculated. The Enhanced method shows significant advantages in finding the goodness of fit for software reliability model such as finite and infinite failure Poisson model and binomial models

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Fractional-Order PID Controllers for Temperature Control:A Review

    Get PDF
    Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Influence Distribution Training Data on Performance Supervised Machine Learning Algorithms

    Get PDF
    Almost all fields of life need Banknote. Even particular fields of life require banknotes in large quantities such as banks, transportation companies, and casinos. Therefore Banknotes are an essential component in carrying out all activities every day, especially those related to finance. Through technological advancements such as scanners and copy machine, it can provide the opportunity for anyone to commit a crime. The crime is like a counterfeit banknote. Many people still find it difficult to distinguish between a genuine banknote ad counterfeit Banknote, that is because counterfeit Banknote produced have a high degree of resemblance to the genuine Banknote. Based on that background, authors want to do a classification process to distinguish between genuine Banknote and counterfeit Banknote. The classification process use methods Supervised Learning and compares the level of accuracy based on the distribution of training data. The methods of supervised Learning used are Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), and Naïve Bayes. K-NN method is a method that has the highest specificity, sensitivity, and accuracy of the three methods used by the authors both in the training data of 30%, 50%, and 80%. Where in the training data 30% and 50% value specificity: 0.99, sensitivity: 1.00, accuracy: 0.99. While the 80% training data value specificity: 1.00, sensitivity: 1.00, accuracy: 1.00. This means that the distribution of training data influences the performance of the Supervised Machine Learning algorithm. In the KNN method, the greater the training data, the better the accuracy

    Digital-Twins towards Cyber-Physical Systems: A Brief Survey

    Get PDF
    Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Physical processes are monitored and controlled by embedded computers and networks, which frequently have feedback loops where physical processes affect computations and vice versa. To ease the analysis of a system, the costly physical plants can be replaced by the high-fidelity virtual models that provide a framework for Digital-Twins (DT). This paper aims to briefly review the state-of-the-art and recent developments in DT and CPS. Three main components in CPS, including communication, control, and computation, are reviewed. Besides, the main tools and methodologies required for implementing practical DT are discussed by following the main applications of DT in the fourth industrial revolution through aspects of smart manufacturing, sixth wireless generation (6G), health, production, energy, and so on. Finally, the main limitations and ideas for future remarks are talked about followed by a short guideline for real-world application of DT towards CPS
    corecore