530 research outputs found

    Vergence control system for stereo depth recovery

    Get PDF
    This paper describes a vergence control algorithm for a 3D stereo recovery system. This work has been developed within framework of the project ROBTET. This project has the purpose of designing a Teleoperated Robotic System for live power lines maintenance. The tasks involved suppose the automatic calculation of path for standard tasks, collision detection to avoid electrical shocks, force feedback and accurate visual data, and the generation of collision free real paths. To accomplish these tasks the system needs an exact model of the environment that is acquired through an active stereoscopic head. A cooperative algorithm using vergence and stereo correlation is shown. The proposed system is carried out through an algorithm based on the phase correlation, trying to keep the vergence on the interest object. The sharp vergence changes produced by the variation of the interest objects are controlled through an estimation of the depth distance generated by a stereo correspondence system. In some elements of the scene, those aligned with the epipolar plane, large errors in the depth estimation as well as in the phase correlation, are produced. To minimize these errors a laser lighting system is used to help fixation, assuring an adequate vergence and depth extraction .The work presented in this paper has been supported by electric utility IBERDROLA, S.A. under project PIE No. 132.198

    Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models

    Get PDF
    Continental rifts are the expression of regional horizontal stretching and are in modelling studies often assumed to be the result of orthogonal or oblique extension. However, naturally occurring V-shaped rift geometries infer an underlying rotational component, resulting in a divergence velocity gradient. Here we use such analogue models of rifting in rotational settings to investigate and quantify the effect of such a divergence velocity gradient on normal fault growth and rift propagation towards a rotation pole. Particularly, we apply different divergence velocities and use different brittle-ductile ratios to simulate different crustal configurations and analyse its effect on rift propagation and surface deformation. Surface deformation is captured using stereoscopic 3D Digital Image Correlation, which allows for quantifying topographic evolution and surface displacement including vertical displacement. In combination with X-Ray computed tomography, we gain insights into the three-dimensional structures in our two-layer models. Based on our models, we present a novel characterisation of normal fault growth under rotational extension which is described by (a) an early stage of bidirectional stepwise growth in length by fault linkage with pulses of high growth rates followed by a longer and continuous stage of unidirectional linear fault growth; (b) segmented rifting activity which promotes strain partitioning among competing conjugate faults and (c) along-strike segmented migration of active faulting from boundary faults inwards to intra-rift faults allowing different fault generations to be simultaneously active over the entire rift length. For models with higher divergence velocities, inward migration is delayed but other first-order observations are similar to models with lower divergence velocities. Our quantitative analysis provides insights on spatiotemporal fault growth and rift propagation in analogue models of rotational rifting. Although natural rifts present complex systems, our models may contribute to a better understanding of natural rift evolution with a rotational component

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Doctor of Philosophy

    Get PDF
    dissertationDigital image processing has wide ranging applications in combustion research. The analysis of digital images is used in practically every scale of studying combustion phenomena from the scale of individual atoms to diagnosing and controlling large-scale combustors. Digital image processing is one of the fastest-growing scientific areas in the world today. From being able to reconstruct low-resolution grayscale images from transmitted signals, the capabilities have grown to enabling machines carrying out tasks that would normally require human vision, perception, and reasoning. Certain applications in combustion science benefit greatly from recent advances in image processing. Unfortunately, since the two fields - combustion and image processing research - stand relatively far from each other, the most recent results are often not known well enough in the areas where they may be applied with great benefits. This work aims to improve the accuracy and reliability of certain measurements in combustion science by selecting, adapting, and implementing the appropriate techniques originally developed in the image processing area. A number of specific applications were chosen that cover a wide range of physical scales of combustion phenomena, and specific image processing methodologies were proposed to improve or enable measurements in studying such phenomena. The selected applications include the description and quantification of combustion-derived carbon nanostructure, the three-dimensional optical diagnostics of combusting pulverized-coal particles and the optical flow velocimetry and quantitative radiation imaging of a pilot-scale oxy-coal flame. In the field of the structural analysis of soot, new structural parameters were derived and the extraction and fidelity of existing ones were improved. In the field of pulverized-coal combustion, the developed methodologies allow for studying the detailed mechanisms of particle combustion in three dimensions. At larger scales, the simultaneous measurement of flame velocity, spectral radiation, and pyrometric properties were realized

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    Development of an augmented reality guided computer assisted orthopaedic surgery system

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively

    Computerised stereoscopic measurement of the human retina

    Get PDF
    The research described herein is an investigation into the problems of obtaining useful clinical measurements from stereo photographs of the human retina through automation of the stereometric procedure by digital stereo matching and image analysis techniques. Clinical research has indicated a correlation between physical changes to the optic disc topography (the region on the retina where the optic nerve enters the eye) and the advance of eye disease such as hypertension and glaucoma. Stereoscopic photography of the human retina (or fundus, as it is called) and the subsequent measurement of the topography of the optic disc is of great potential clinical value as an aid in observing the pathogenesis of such disease, and to this end, accurate measurements of the various parameters that characterise the changing shape of the optic disc topography must be provided. Following a survey of current clinical methods for stereoscopic measurement of the optic disc, fundus image data acquisition, stereo geometry, limitations of resolution and accuracy, and other relevant physical constraints related to fundus imaging are investigated. A survey of digital stereo matching algorithms is presented and their strengths and weaknesses are explored, specifically as they relate to the suitability of the algorithm for the fundus image data. The selection of an appropriate stereo matching algorithm is discussed, and its application to four test data sets is presented in detail. A mathematical model of two-dimensional image formation is developed together with its corresponding auto-correlation function. In the presense of additive noise, the model is used as a tool for exploring key problems with respect to the stereo matching of fundus images. Specifically, measures for predicting correlation matching error are developed and applied. Such measures are shown to be of use in applications where the results of image correlation cannot be independently verified, and meaningful quantitative error measures are required. The application of these theoretical tools to the fundus image data indicate a systematic way to measure, assess and control cross-correlation error. Conclusions drawn from this research point the way forward for stereo analysis of the optic disc and highlight a number of areas which will require further research. The development of a fully automated system for diagnostic evaluation of the optic disc topography is discussed in the light of the results obtained during this research

    Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms

    Get PDF
    Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint—time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision

    A cross-modal investigation into the relationships between bistable perception and a global temporal mechanism

    Get PDF
    When the two eyes are presented with sufficiently different images, Binocular Rivalry (BR) occurs. BR is a form of bistable perception involving stochastic alternations in awareness between distinct images shown to each eye. It has been suggested that the dynamics of BR are due to the activity of a central temporal process and are linked to involuntary mechanisms of selective attention (aka exogenous attention). To test these ideas, stimuli designed to evoke exogenous attention and central temporal processes were employed during BR observation. These stimuli included auditory and visual looming motion and streams of transient events of varied temporal rate and pattern. Although these stimuli exerted a strong impact over some aspects of BR, they were unable to override its characteristic stochastic pattern of alternations completely. It is concluded that BR is subject to distributed influences, but ultimately, is achieved in neural processing areas specific to the binocular conflict
    • …
    corecore