17,866 research outputs found

    A new look at nonnegativity on closed sets and polynomial optimization

    Full text link
    We first show that a continuous function f is nonnegative on a closed set KRnK\subseteq R^n if and only if (countably many) moment matrices of some signed measure dν=fdμd\nu =fd\mu with support equal to K, are all positive semidefinite (if KK is compact μ\mu is an arbitrary finite Borel measure with support equal to K. In particular, we obtain a convergent explicit hierarchy of semidefinite (outer) approximations with {\it no} lifting, of the cone of nonnegative polynomials of degree at most dd. Wen used in polynomial optimization on certain simple closed sets \K (like e.g., the whole space Rn\R^n, the positive orthant, a box, a simplex, or the vertices of the hypercube), it provides a nonincreasing sequence of upper bounds which converges to the global minimum by solving a hierarchy of semidefinite programs with only one variable. This convergent sequence of upper bounds complements the convergent sequence of lower bounds obtained by solving a hierarchy of semidefinite relaxations

    Certification of Real Inequalities -- Templates and Sums of Squares

    Full text link
    We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like cos\cos, arctan\arctan, exp\exp, etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus estimators (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new - template based - certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.Comment: 27 pages, 3 figures, 4 table

    Linearly Solvable Stochastic Control Lyapunov Functions

    Get PDF
    This paper presents a new method for synthesizing stochastic control Lyapunov functions for a class of nonlinear stochastic control systems. The technique relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation to a linear partial differential equation for a class of problems with a particular constraint on the stochastic forcing. This linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions are in fact viscosity super/subsolutions, and by the maximum principle are pointwise upper and lower bounds to the underlying value function, even for coarse polynomial approximations. Furthermore, the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method for generating nonlinear controllers with pointwise bounded distance from the optimal cost when using the optimal controller. These approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a-priori bounds on trajectory suboptimality when using these approximate value functions, as well as demonstrates that these methods, and bounds, can be applied to a more general class of nonlinear systems not obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio
    corecore