4,560 research outputs found

    Continuous Monitoring of Top-K Queries over Sliding Windows

    Get PDF
    Given a dataset P and a preference function f, a top-k query retrieves the k tuples in P with the highest scores according to f. Even though the problem is well-studied in conventional databases, the existing methods are inapplicable to highly dynamic environments involving numerous long-running queries. This paper studies continuous monitoring of top-k queries over a fixed-size window W of the most recent data. The window size can be expressed either in terms of the number of active tuples or time units. We propose a general methodology for top-k monitoring that restricts processing to the sub-domains of the workspace that influence the result of some query. To cope with high stream rates and provide fast answers in an on-line fashion, the data in W reside in main memory. The valid records are indexed by a grid structure, which also maintains book-keeping information. We present two processing techniques: the first one computes the new answer of a query whenever some of the current top-k points expire; the second one partially pre-computes the future changes in the result, achieving better running time at the expense of slightly higher space requirements. We analyze the performance of both algorithms and evaluate their efficiency through extensive experiments. Finally, we extend the proposed framework to other query types and a different data stream model. Copyright 2006 ACM

    Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window

    Get PDF
    The past decade has witnessed many interesting algorithms for maintaining statistics over a data stream. This paper initiates a theoretical study of algorithms for monitoring distributed data streams over a time-based sliding window (which contains a variable number of items and possibly out-of-order items). The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to be able to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is O(kϵlogϵNk)O(\frac{k} {\epsilon} \log \frac{\epsilon N}{k}) bits for basic counting and O(kϵlogNk)O(\frac{k}{\epsilon} \log \frac{N}{k}) words for the remainings, where kk is the number of distributed data streams, NN is the total number of items in the streams that arrive or expire in the window, and ϵ<1\epsilon < 1 is the desired error bound. Matching and nearly matching lower bounds are also obtained.Comment: 12 pages, to appear in the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), 201

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Analysing Temporal Relations – Beyond Windows, Frames and Predicates

    Get PDF
    This article proposes an approach to rely on the standard operators of relational algebra (including grouping and ag- gregation) for processing complex event without requiring window specifications. In this way the approach can pro- cess complex event queries of the kind encountered in appli- cations such as emergency management in metro networks. This article presents Temporal Stream Algebra (TSA) which combines the operators of relational algebra with an analy- sis of temporal relations at compile time. This analysis de- termines which relational algebra queries can be evaluated against data streams, i. e. the analysis is able to distinguish valid from invalid stream queries. Furthermore the analysis derives functions similar to the pass, propagation and keep invariants in Tucker's et al. \Exploiting Punctuation Seman- tics in Continuous Data Streams". These functions enable the incremental evaluation of TSA queries, the propagation of punctuations, and garbage collection. The evaluation of TSA queries combines bulk-wise and out-of-order processing which makes it tolerant to workload bursts as they typically occur in emergency management. The approach has been conceived for efficiently processing complex event queries on top of a relational database system. It has been deployed and tested on MonetDB

    GreedyDual-Join: Locality-Aware Buffer Management for Approximate Join Processing Over Data Streams

    Full text link
    We investigate adaptive buffer management techniques for approximate evaluation of sliding window joins over multiple data streams. In many applications, data stream processing systems have limited memory or have to deal with very high speed data streams. In both cases, computing the exact results of joins between these streams may not be feasible, mainly because the buffers used to compute the joins contain much smaller number of tuples than the tuples contained in the sliding windows. Therefore, a stream buffer management policy is needed in that case. We show that the buffer replacement policy is an important determinant of the quality of the produced results. To that end, we propose GreedyDual-Join (GDJ) an adaptive and locality-aware buffering technique for managing these buffers. GDJ exploits the temporal correlations (at both long and short time scales), which we found to be prevalent in many real data streams. We note that our algorithm is readily applicable to multiple data streams and multiple joins and requires almost no additional system resources. We report results of an experimental study using both synthetic and real-world data sets. Our results demonstrate the superiority and flexibility of our approach when contrasted to other recently proposed techniques

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201
    corecore