372 research outputs found

    Forest Fires and Remote Sensing

    Get PDF

    Review of the use of remote sensing for monitoring wildfire risk conditions to support fire risk assessment in protected areas

    Get PDF
    Fire risk assessment is one of the most important components in the management of fire that offers the framework for monitoring fire risk conditions. Whilst monitoring fire risk conditions commonly revolved around field data, Remote Sensing (RS) plays key role in quantifying and monitoring fire risk indicators. This study presents a review of remote sensing data and techniques for fire risk monitoring and assessment with a particular emphasis on its implications for wildfire risk mapping in protected areas. Firstly, we concentrate on RS derived variables employed to monitor fire risk conditions for fire risk assessment. Thereafter, an evaluation of the prominent RS platforms such as Broadband, Hyperspectral and Active sensors that have been utilized for wildfire risk assessment. Furthermore, we demonstrate the effectiveness in obtaining information that has operational use or immediate potentials for operational application in protected areas (PAs). RS techniques that involve extraction of landscape information from imagery were summarised. The review concludes that in practice, fire risk assessment that consider all variables/indicators that influence fire risk is impossible to establish, however it is imperative to incorporate indicators or variables of very high heterogeneous and “multi-sensoral or multivariate fire risk index approach for fire risk assessment in PA.Keywords: Protected Areas, Fire Risk conditions; Remote Sensing, Wildfire risk assessmen

    Assessment of the influence of biophysical properties related to fuel conditions on fire severity using remote sensing techniques: a case study on a large fire in NW Spain

    Get PDF
    P. 512-520This study analyses the suitability of remote sensing data from different sources (Landsat 7 ETM+, MODIS and Meteosat) in evaluating the effect of fuel conditions on fire severity, using a megafire (11 891 ha) that occurred in a Mediterranean pine forest ecosystem (NW Spain) between 19 and 22 August 2012. Fire severity was measured via the delta Normalized Burn Ratio index. Fuel conditions were evaluated through biophysical variables of: (i) the Visible Atmospherically Resistant Index and mean actual evapotranspiration, as proxies of potential live fuel amount; and (ii) Land Surface Temperature and water deficit, as proxies of fuel moisture content. Relationships between fuel conditions and fire severity were evaluated using Random Forest models. Biophysical variables explained 40% of the variance. The Visible Atmospherically Resistant Index was the most important predictor, being positively associated with fire severity. Evapotranspiration also positively influenced severity, although its importance was conditioned by the data source. Live fuel amount, rather than fuel moisture content, primarily affected fire severity. Nevertheless, an increase in water deficit and land surface temperature was generally associated with greater fire severity. This study highlights that fuel conditions largely determine fire severity, providing useful information for defining pre-fire actions aimed at reducing fire effects

    8. Remote Sensing Of Vegetation Fires And Its Contribution To A Fire Management Information System

    Get PDF
    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then precedes a description of fire information obtainable from remote sensing data (such as vegetation status, active fire detection and burned areas assessment). Finally, operational examples in five African countries illustrate the practical use of remotely sensed fire information. As indicated in previous chapters, fire management usually comprises activities designed to control the frequency, area, intensity or impact of fire. These activities are undertaken in different institutional, economic, social, environmental and geographical contexts, as well as at different scales, from local to national. The range of fire management activities also varies considerably according to the management issues at stake, as well as the available means and capacity to act. Whatever the level, effective fire management requires reliable information upon which to base appropriate decisions and actions. Information will be required at many different stages of this fire management system. To illustrate this, we consider a typical and generic description of a fire management loop , as provided in Figure 8.1. Fire management objectives result from fire related knowledge . For example, they may relate to sound ecological reasons for prescribed burning in a particular land management context, or to frequent, uncontrolled fires threatening valuable natural or human resources. Whatever the issues, appropriate objectives require scientific knowledge (such as fire impact on ecosystems components, such as soil and vegetation), as well as up-to date monitoring information (such as vegetation status, fire locations, land use, socioeconomic context, etc.). Policies, generally at a national and governmental level, provide the official or legal long term framework (e.g. five to ten years) to undertake actions. A proper documentation of different fire issues, and their evolution, will allow their integration into appropriate policies, whether specific to fire management, or complementary to other policies in areas such as forestry, rangeland, biodiversity, land tenure, etc. Strategies are found at all levels of fire management. They provide a shorter-term framework (e.g. one to five years) to prioritise fire management activities. They involve the development of a clear set of objectives and a clear set of activities to achieve these objectives. They may also include research and training inputs required, in order to build capacity and to answer specific questions needed to improve fire management. The chosen strategy will result from a trade-off between priority fire management objectives and the available capacity to act (e.g. institutional framework, budget, staff, etc.), and will lead towards a better allocation of resources for fire management operations to achieve specific objectives. One example in achieving an objective of conserving biotic diversity may be the implementation of a patch-mosaic burning system (Brockett et al., 200 1 ) instead of a prescribed block burning system, based on an assumption that the former should better promote biodiversity in the long-term than the latter (Parr & Brockett, 1999). This strategy requires the implementation of early season fires to reduce the size of later season fires. The knowledge of population movements, new settlements or a coming El Nino season, should help focus the resources usage, as these factors might influence the proportion as well as the locations of area burned. Another strategy may be to prioritise the grading of fire lines earlier than usual based on information on high biomass accumulation. However, whatever the strategies, they need to be based on reliable information

    8. Remote Sensing Of Vegetation Fires And Its Contribution To A Fire Management Information System

    Get PDF
    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then precedes a description of fire information obtainable from remote sensing data (such as vegetation status, active fire detection and burned areas assessment). Finally, operational examples in five African countries illustrate the practical use of remotely sensed fire information. As indicated in previous chapters, fire management usually comprises activities designed to control the frequency, area, intensity or impact of fire. These activities are undertaken in different institutional, economic, social, environmental and geographical contexts, as well as at different scales, from local to national. The range of fire management activities also varies considerably according to the management issues at stake, as well as the available means and capacity to act. Whatever the level, effective fire management requires reliable information upon which to base appropriate decisions and actions. Information will be required at many different stages of this fire management system. To illustrate this, we consider a typical and generic description of a fire management loop , as provided in Figure 8.1. Fire management objectives result from fire related knowledge . For example, they may relate to sound ecological reasons for prescribed burning in a particular land management context, or to frequent, uncontrolled fires threatening valuable natural or human resources. Whatever the issues, appropriate objectives require scientific knowledge (such as fire impact on ecosystems components, such as soil and vegetation), as well as up-to date monitoring information (such as vegetation status, fire locations, land use, socioeconomic context, etc.). Policies, generally at a national and governmental level, provide the official or legal long term framework (e.g. five to ten years) to undertake actions. A proper documentation of different fire issues, and their evolution, will allow their integration into appropriate policies, whether specific to fire management, or complementary to other policies in areas such as forestry, rangeland, biodiversity, land tenure, etc. Strategies are found at all levels of fire management. They provide a shorter-term framework (e.g. one to five years) to prioritise fire management activities. They involve the development of a clear set of objectives and a clear set of activities to achieve these objectives. They may also include research and training inputs required, in order to build capacity and to answer specific questions needed to improve fire management. The chosen strategy will result from a trade-off between priority fire management objectives and the available capacity to act (e.g. institutional framework, budget, staff, etc.), and will lead towards a better allocation of resources for fire management operations to achieve specific objectives. One example in achieving an objective of conserving biotic diversity may be the implementation of a patch-mosaic burning system (Brockett et al., 200 1 ) instead of a prescribed block burning system, based on an assumption that the former should better promote biodiversity in the long-term than the latter (Parr & Brockett, 1999). This strategy requires the implementation of early season fires to reduce the size of later season fires. The knowledge of population movements, new settlements or a coming El Nino season, should help focus the resources usage, as these factors might influence the proportion as well as the locations of area burned. Another strategy may be to prioritise the grading of fire lines earlier than usual based on information on high biomass accumulation. However, whatever the strategies, they need to be based on reliable information

    Satellite Remote Sensing contributions to Wildland Fire Science and Management

    Get PDF
    No funding was received for this particular review, but support research was funded by the European Space Agency’s Climate Change Initiative Programme to Dr. Chuvieco.This paper reviews the most recent literature related to the use of remote sensing (RS) data in wildland fire management. Recent Findings Studies dealing with pre-fire assessment, active fire detection, and fire effect monitoring are reviewed in this paper. The analysis follows the different fire management categories: fire prevention, detection, and post-fire assessment. Extracting the main trends from each of these temporal sections, recent RS literature shows growing support of the combined use of different sensors, particularly optical and radar data and lidar and optical passive images. Dedicated fire sensors have been developed in the last years, but still, most fire products are derived from sensors that were designed for other purposes. Therefore, the needs of fire managers are not always met, both in terms of spatial and temporal scales, favouring global over local scales because of the spatial resolution of existing sensors. Lidar use on fuel types and post-fire regeneration is more local, and mostly not operational, but future satellite lidar systems may help to obtain operational products. Regional and global scales are also combined in the last years, emphasizing the needs of using upscaling and merging methods to reduce uncertainties of global products. Validation is indicated as a critical phase of any new RS-based product. It should be based on the independent reference information acquired from statistically derived samples. The main challenges of using RS for fire management rely on the need to improve the integration of sensors and methods to meet user requirements, uncertainty characterization of products, and greater efforts on statistical validation approaches.European Space Agenc

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Satellite remote sensing of aerosols using geostationary observations from MSG-SEVIRI

    Get PDF
    Aerosols play a fundamental role in physical and chemical processes affecting regional and global climate, and have adverse effects on human health. Although much progress has been made over the past decade in understanding aerosol-climate interactions, their impact still remains one of the largest sources of uncertainty in climate change assessment. The wide variety of aerosol sources and the short lifetime of aerosol particles cause highly variable aerosol fields in both space and time. Groundbased measurements can provide continuous data with high accuracy, but often they are valid for a limited area and are not available for remote areas. Satellite remote sensing appears therefore to be the most appropriate tool for monitoring the high variability of aerosol properties over large scales. Passive remote sensing of aerosol properties is based on the ability of aerosols to scatter and absorb solar radiation. Algorithms for aerosol retrieval from satellites are used to derive the aerosol optical depth (AOD), which is the aerosol extinction integrated over the entire atmospheric column. The aim of the work described in this thesis was to develop and validate a new algorithm for the retrieval of aerosol optical properties from geostationary observations with the SEVIRI (Spinning Enhanced Visible and Infra-Red Imager) instrument onboard the MSG (Meteorological Second Generation) satellite. Every 15 minutes, MSG-SEVIRI captures a full scan of an Earth disk covering Europe and the whole African continent with a high spatial resolution. With such features MSG-SEVIRI offers the unique opportunity to explore transport of aerosols, and to study their impact on both air quality and climate. The SEVIRI Aerosol Retrieval Algorithm (SARA) presented in this thesis, estimates the AOD over sea and land surfaces using the three visible channels and one near-infrared channel of the instrument. Because only clear sky radiances can be used to derive aerosol information, a stand-alone cloud detection algorithm was developed to remove cloud contaminated pixels. The cloud mask was generated over Europe for different seasons, and it compared favorably with the results from other cloud detection algorithms - namely the cloud mask algorithm of Meteo-France for MSG-SEVIRI, and the MODIS (Moderate Resolution Imaging Spectroradiometer) algorithm. The aerosol information is extracted from cloud-free scenes using a method that minimizes the error between the measured and the simulated radiance. The signal observed at the satellite level results from the complex combination of the surface and the atmosphere contributions. The surface contribution is either parameterized (over sea), or based on a priori values (over land). The effects of atmospheric gases and aerosols on the radiance are simulated with the radiative transfer model DAK (Doubling-Adding-KNMI) for different atmospheric scenarios. The algorithm was applied for various case studies (i.e. forest fires, dust storm, anthropogenic pollution) over Europe, and the results were validated against groundbased measurements from the AERONET database, and evaluated by comparison with aerosol products derived from other space-borne instruments such as the Terra/- Aqua-MODIS sensors. In general, for retrievals over the ocean, AOD values as well as their diurnal variations are in good agreement with the observations made at AERONET coastal sites, and the spatial variations of the AOD obtained with the SARA algorithm are well correlated with the results derived from MODIS. Over land, the results presented should be considered as preliminary. They show reasonable agreement with AERONET and MODIS, however extra work is required to improve the accuracy of the retrievals based on the proposed metho

    Improving the estimation of fire danger, fire propagation and fire monitoring : new insights using remote sensing data and statistical methods

    Get PDF
    This thesis covers three major topics related to wildfires, remote sensing and meteorology: (i) quantifying and forecasting fire danger combining numerical weather forecasts and satellite observations of fire intensity; (ii) mapping burned areas from satellite observations with multiple spatial and spectral resolution; and (iii) modelling fire progression taking into account weather conditions and fuel (vegetation) availability. Regarding the first topic, an enhanced Fire Weather Index (FWI) is proposed by using statistical methods to combine the classical FWI with an atmospheric instability index with the aim of better forecasting the fire danger conditions favourable to the development of convective fires. Furthermore, the daily definition of the classical FWI was extended to an hourly timescale, allowing for assessment of the variability of the fire danger conditions throughout the day. For the second topic, a method is proposed to map and date burned areas using sequences of daily satellite data. This method, tested over several regions around the globe, provide burned area maps that outperform other existing methods for the task, particularly regarding the consistency and accuracy of the date of burning. Furthermore, a method is proposed for fast assessment of burned areas using 10-meter resolution satellite data and making use of Google Earth Engine (GEE) as a tool for preprocessing and downloading of data that is then used as input to a deep learning model that combines a coarse burned area map with the medium resolution data to provide a refined burned area map with 10-meter resolution at event level and with low computational requirements. Finally, for the third topic, a method is proposed to estimate the fire progression over a 12-hour period with resource to an ensemble of models trained based on the reconstruction of past events. Overall, I am confident that the results obtained and presented in this thesis provide a significant contribution to the remote sensing and wildfires scientific community while opening interesting paths for future research on the topics described
    corecore