61,508 research outputs found

    Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization

    Get PDF
    Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing challenge for neural network models due to catastrophic forgetting. Computational models of lifelong learning typically alleviate catastrophic forgetting in experimental scenarios with given datasets of static images and limited complexity, thereby differing significantly from the conditions artificial agents are exposed to. In more natural settings, sequential information may become progressively available over time and access to previous experience may be restricted. In this paper, we propose a dual-memory self-organizing architecture for lifelong learning scenarios. The architecture comprises two growing recurrent networks with the complementary tasks of learning object instances (episodic memory) and categories (semantic memory). Both growing networks can expand in response to novel sensory experience: the episodic memory learns fine-grained spatiotemporal representations of object instances in an unsupervised fashion while the semantic memory uses task-relevant signals to regulate structural plasticity levels and develop more compact representations from episodic experience. For the consolidation of knowledge in the absence of external sensory input, the episodic memory periodically replays trajectories of neural reactivations. We evaluate the proposed model on the CORe50 benchmark dataset for continuous object recognition, showing that we significantly outperform current methods of lifelong learning in three different incremental learning scenario

    Incremental Adversarial Domain Adaptation for Continually Changing Environments

    Full text link
    Continuous appearance shifts such as changes in weather and lighting conditions can impact the performance of deployed machine learning models. While unsupervised domain adaptation aims to address this challenge, current approaches do not utilise the continuity of the occurring shifts. In particular, many robotics applications exhibit these conditions and thus facilitate the potential to incrementally adapt a learnt model over minor shifts which integrate to massive differences over time. Our work presents an adversarial approach for lifelong, incremental domain adaptation which benefits from unsupervised alignment to a series of intermediate domains which successively diverge from the labelled source domain. We empirically demonstrate that our incremental approach improves handling of large appearance changes, e.g. day to night, on a traversable-path segmentation task compared with a direct, single alignment step approach. Furthermore, by approximating the feature distribution for the source domain with a generative adversarial network, the deployment module can be rendered fully independent of retaining potentially large amounts of the related source training data for only a minor reduction in performance.Comment: International Conference on Robotics and Automation 201

    CORe50: a New Dataset and Benchmark for Continuous Object Recognition

    Full text link
    Continuous/Lifelong learning of high-dimensional data streams is a challenging research problem. In fact, fully retraining models each time new data become available is infeasible, due to computational and storage issues, while na\"ive incremental strategies have been shown to suffer from catastrophic forgetting. In the context of real-world object recognition applications (e.g., robotic vision), where continuous learning is crucial, very few datasets and benchmarks are available to evaluate and compare emerging techniques. In this work we propose a new dataset and benchmark CORe50, specifically designed for continuous object recognition, and introduce baseline approaches for different continuous learning scenarios
    • …
    corecore