27,548 research outputs found

    Structure of the broken phase of the sine-Gordon model using functional renormalization

    Full text link
    We study in this paper the sine-Gordon model using functional Renormalization Group (fRG) at Local Potential Approximation (LPA) using different RG schemes. In d=2d=2, using Wegner-Houghton RG we demonstrate that the location of the phase boundary is entirely driven by the relative position to the Coleman fixed point even for strongly coupled bare theories. We show the existence of a set of IR fixed points in the broken phase that are reached independently of the bare coupling. The bad convergence of the Fourier series in the broken phase is discussed and we demonstrate that these fixed-points can be found only using a global resolution of the effective potential. We then introduce the methodology for the use of Average action method where the regulator breaks periodicity and show that it provides the same conclusions for various regulators. The behavior of the model is then discussed in d≠2d\ne 2 and the absence of the previous fixed points is interpreted.Comment: 43 pages, 32 figures, accepted versio

    The non-perturbative renormalization group in the ordered phase

    Full text link
    We study some analytical properties of the solutions of the non perturbative renormalization group flow equations for a scalar field theory with Z2Z_2 symmetry in the ordered phase, i.e. at temperatures below the critical temperature. The study is made in the framework of the local potential approximation. We show that the required physical discontinuity of the magnetic susceptibility χ(M)\chi(M) at M=±M0M=\pm M_0 (M0M_0 spontaneous magnetization) is reproduced only if the cut-off function which separates high and low energy modes satisfies to some restrictive explicit mathematical conditions; we stress that these conditions are not satisfied by a sharp cut-off in dimensions of space d<4d<4.Comment: 27 pages, 14 figures, 7 table

    Decay rate estimations for linear quadratic optimal regulators

    Full text link
    Let u(t)=−Fx(t)u(t)=-Fx(t) be the optimal control of the open-loop system x′(t)=Ax(t)+Bu(t)x'(t)=Ax(t)+Bu(t) in a linear quadratic optimization problem. By using different complex variable arguments, we give several lower and upper estimates of the exponential decay rate of the closed-loop system x′(t)=(A−BF)x(t)x'(t)=(A-BF)x(t). Main attention is given to the case of a skew-Hermitian matrix AA. Given an operator AA, for a class of cases, we find a matrix BB that provides an almost optimal decay rate. We show how our results can be applied to the problem of optimizing the decay rate for a large finite collection of control systems (A,Bj)(A, B_j), j=1,…,Nj=1, \dots, N, and illustrate this on an example of a concrete mechanical system. At the end of the article, we pose several questions concerning the decay rates in the context of linear quadratic optimization and in a more general context of the pole placement problem.Comment: 25 pages, 1 figur

    Is Hilbert space discrete?

    Get PDF
    We show that discretization of spacetime naturally suggests discretization of Hilbert space itself. Specifically, in a universe with a minimal length (for example, due to quantum gravity), no experiment can exclude the possibility that Hilbert space is discrete. We give some simple examples involving qubits and the Schrodinger wavefunction, and discuss implications for quantum information and quantum gravity.Comment: 4 pages, revtex, 1 figur

    Robust â„‹2 Performance: Guaranteeing Margins for LQG Regulators

    Get PDF
    This paper shows that ℋ2 (LQG) performance specifications can be combined with structured uncertainty in the system, yielding robustness analysis conditions of the same nature and computational complexity as the corresponding conditions for ℋ∞ performance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to be necessary and sufficient under the same conditions as in the ℋ∞ case. With these results, the tools of robust control can be viewed as coming full circle to treat the problem where it all began: guaranteeing margins for LQG regulators
    • …
    corecore