270 research outputs found

    Examining the Relationship Between Lignocellulosic Biomass Structural Constituents and Its Flow Behavior

    Get PDF
    Lignocellulosic biomass material sourced from plants and herbaceous sources is a promising substrate of inexpensive, abundant, and potentially carbon-neutral energy. One of the leading limitations of using lignocellulosic biomass as a feedstock for bioenergy products is the flow issues encountered during biomass conveyance in biorefineries. In the biorefining process, the biomass feedstock undergoes flow through a variety of conveyance systems. The inherent variability of the feedstock materials, as evidenced by their complex microstructural composition and non-uniform morphology, coupled with the varying flow conditions in the conveyance systems, gives rise to flow issues such as bridging, ratholing, and clogging. These issues slow down the conveyance process, affect machine life, and potentially lead to partial or even complete shutdown of the biorefinery. Hence, we need to improve our fundamental understanding of biomass feedstock flow physics and mechanics to address the flow issues and improve biorefinery economics. This dissertation research examines the fundamental relationship between structural constituents of diverse lignocellulosic biomass materials, i.e., cellulose, hemicellulose, and lignin, their morphology, and the impact of the structural composition and morphology on their flow behavior. First, we prepared and characterized biomass feedstocks of different chemical compositions and morphologies. Then, we conducted our fundamental investigation experimentally, through physical flow characterization tests, and computationally through high-fidelity discrete element modeling. Finally, we statistically analyzed the relative influence of the properties of lignocellulosic biomass assemblies on flow behavior to determine the most critical properties and the optimum values of flow parameters. Our research provides an experimental and computational framework to generalize findings to a wider portfolio of biomass materials. It will help the bioenergy community to design more efficient biorefining machinery and equipment, reduce the risk of failure, and improve the overall commercial viability of the bioenergy industry

    University of Windsor Undergraduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1023/thumbnail.jp

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Contact force models for non-spherical particles with different surface properties : a review

    Get PDF
    This paper reviews the state-of-the-art contact force models for non-spherical particles, which describe the relationship between the contact force and the geometrical, material, and mechanical properties of the contacting particles. The review aims to select better contact force models to improve the current simplified contact force models used in discrete element method (DEM) simulations. First, the contact force models based on the extension of the classical Hertz theory are reviewed, in which a recent accurate geometrical contact force model is highlighted. Secondly, the research on the effects of different variables such as elastoplasticity, viscoelasticity, adhesion and surface roughness on contact force are reviewed respectively and then incorporated into the accurate geometrical contact force model. Thirdly, tangential force models for non-spherical particles in contact under various loading regimes are reviewed as well. Based on the review, a full set of improved contact force models for DEM is recommended. These contact force models can more accurately predict the contact force and contact area for non-spherical particles, which can be beneficial to the DEM simulation in emerging areas, such as nanoparticles and additive manufacturing

    University of Windsor Undergraduate Calendar 2023 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1020/thumbnail.jp

    University of Windsor Undergraduate Calendar 2022 Winter

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1017/thumbnail.jp

    University of Windsor Undergraduate Calendar 2022 Fall

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorundergraduatecalendars/1019/thumbnail.jp

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore