3,206 research outputs found

    Strong Correlations in a nutshell

    Full text link
    We present the phase diagram of clusters made of two, three and four coupled Anderson impurities. All three clusters share qualitatively similar phase diagrams that include Kondo screened and unscreened regimes separated by almost critical crossover regions reflecting the proximity to barely avoided critical points. This suggests the emergence of universal paradigms that apply to clusters of arbitrary size. We discuss how these crossover regions of the impurity models might affect the approach to the Mott transition within a cluster extension of dynamical mean field theory.Comment: 45 pages, 14 figures. To appear in Journal of Physics: Condensed Matte

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    Rigid C^*-tensor categories of bimodules over interpolated free group factors

    Full text link
    Given a countably generated rigid C^*-tensor category C, we construct a planar algebra P whose category of projections Pro is equivalent to C. From P, we use methods of Guionnet-Jones-Shlyakhtenko-Walker to construct a rigid C^*-tensor category Bim whose objects are bifinite bimodules over an interpolated free group factor, and we show Bim is equivalent to Pro. We use these constructions to show C is equivalent to a category of bifinite bimodules over L(F_infty).Comment: 50 pages, many figure
    • …
    corecore