168 research outputs found

    Activity-conditioned continuous human pose estimation for performance analysis of athletes using the example of swimming

    Get PDF
    In this paper we consider the problem of human pose estimation in real-world videos of swimmers. Swimming channels allow filming swimmers simultaneously above and below the water surface with a single stationary camera. These recordings can be used to quantitatively assess the athletes' performance. The quantitative evaluation, so far, requires manual annotations of body parts in each video frame. We therefore apply the concept of CNNs in order to automatically infer the required pose information. Starting with an off-the-shelf architecture, we develop extensions to leverage activity information - in our case the swimming style of an athlete - and the continuous nature of the video recordings. Our main contributions are threefold: (a) We apply and evaluate a fine-tuned Convolutional Pose Machine architecture as a baseline in our very challenging aquatic environment and discuss its error modes, (b) we propose an extension to input swimming style information into the fully convolutional architecture and (c) modify the architecture for continuous pose estimation in videos. With these additions we achieve reliable pose estimates with up to +16% more correct body joint detections compared to the baseline architecture.Comment: 10 pages, 9 figures, accepted at WACV 201

    Deep learning and 5G and beyond for child drowning prevention in swimming pools

    Get PDF
    Drowning is a major health issue worldwide. The World Health Organization’s global report on drowning states that the highest rates of drowning deaths occur among children aged 1–4 years, followed by children aged 5–9 years. Young children can drown silently in as little as 25 s, even in the shallow end or in a baby pool. The report also identifies that the main risk factor for children drowning is the lack of or inadequate supervision. Therefore, in this paper, we propose a novel 5G and beyond child drowning prevention system based on deep learning that detects and classifies distractions of inattentive parents or caregivers and alerts them to focus on active child supervision in swimming pools. In this proposal, we have generated our own dataset, which consists of images of parents/caregivers watching the children or being distracted. The proposed model can successfully perform a seven-class classification with very high accuracies (98%, 94%, and 90% for each model, respectively). ResNet-50, compared with the other models, performs better classifications for most classes.Peer ReviewedPostprint (published version

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Enhanced gesture sensing using battery-less wearable motion trackers

    Get PDF
    • …
    corecore