7,313 research outputs found

    Continuous Variable Quantum Cryptography using Two-Way Quantum Communication

    Full text link
    Quantum cryptography has been recently extended to continuous variable systems, e.g., the bosonic modes of the electromagnetic field. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. Such protocols have shown the possibility of reaching very high secret-key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. In this general scenario we show a "hardware solution" for enhancing the security thresholds of these protocols. This is possible by extending them to a two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other with the chance of a non-trivial superadditive enhancement of the security thresholds. Such results enable the extension of quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Continuous variable controlled quantum dialogue and secure multiparty quantum computation

    Full text link
    A continuous variable controlled quantum dialogue scheme is proposed. The scheme is further modified to obtain two other protocols of continuous variable secure multiparty computation. The first one of these protocols provides a solution of two party socialist millionaire problem, while the second protocol provides a solution for a special type of multi-party socialist millionaire problem which can be viewed as a protocol for multiparty quantum private comparison. It is shown that the proposed scheme of continuous variable controlled quantum dialogue can be performed using bipartite entanglement and can be reduced to obtain several other two and three party cryptographic schemes in the limiting cases. The security of the proposed scheme and its advantage over corresponding discrete variable counterpart are also discussed. Specifically, the ignorance of an eavesdropper in the proposed scheme is shown to be very high compared with corresponding discrete variable scheme and thus the present scheme is less prone to information leakage inherent with the discrete variable quantum dialogue based schemes.It is further established that the proposed scheme can be viewed as a continuous variable counterpart of quantum cryptographic switch which allows a supervisor to control the information transferred between the two legitimate parties to a continuously varying degree.Comment: Quantum dialogue and its application in the continuous variable scenario is studied in detai

    Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations

    Full text link
    The ability to distribute secret keys between two parties with information-theoretic security, that is, regardless of the capacities of a malevolent eavesdropper, is one of the most celebrated results in the field of quantum information processing and communication. Indeed, quantum key distribution illustrates the power of encoding information on the quantum properties of light and has far reaching implications in high-security applications. Today, quantum key distribution systems operate in real-world conditions and are commercially available. As with most quantum information protocols, quantum key distribution was first designed for qubits, the individual quanta of information. However, the use of quantum continuous variables for this task presents important advantages with respect to qubit based protocols, in particular from a practical point of view, since it allows for simple implementations that require only standard telecommunication technology. In this review article, we describe the principle of continuous-variable quantum key distribution, focusing in particular on protocols based on coherent states. We discuss the security of these protocols and report on the state-of-the-art in experimental implementations, including the issue of side-channel attacks. We conclude with promising perspectives in this research field.Comment: 21 pages, 2 figures, 1 tabl

    Trusted Noise in Continuous-Variable Quantum Key Distribution: a Threat and a Defense

    Full text link
    We address the role of the phase-insensitive trusted preparation and detection noise in the security of a continuous-variable quantum key distribution, considering the Gaussian protocols on the basis of coherent and squeezed states and studying them in the conditions of Gaussian lossy and noisy channels. The influence of such a noise on the security of Gaussian quantum cryptography can be crucial, even despite the fact that a noise is trusted, due to a strongly nonlinear behavior of the quantum entropies involved in the security analysis. We recapitulate the known effect of the preparation noise in both direct and reverse-reconciliation protocols, as well as the detection noise in the reverse-reconciliation scenario. As a new result, we show the negative role of the trusted detection noise in the direct-reconciliation scheme. We also describe the role of the trusted preparation or detection noise added at the reference side of the protocols in improving the robustness of the protocols to the channel noise, confirming the positive effect for the coherent-state reverse-reconciliation protocol. Finally, we address the combined effect of trusted noise added both in the source and the detector.Comment: 25 pages, 9 figure

    Security of two-way quantum cryptography against asymmetric Gaussian attacks

    Full text link
    Recently, we have shown the advantages of two-way quantum communications in continuous variable quantum cryptography. Thanks to this new approach, two honest users can achieve a non-trivial security enhancement as long as the Gaussian interactions of an eavesdropper are independent and identical. In this work, we consider asymmetric strategies where the Gaussian interactions can be different and classically correlated. For several attacks of this kind, we prove that the enhancement of security still holds when the two-way protocols are used in direct reconciliation.Comment: Proceeding of the SPIE Conference "Quantum Communications and Quantum Imaging VI" - San Diego 2008. This paper is connected with arXiv:quant-ph/0611167 (for the last version see: Nature Physics 4, 726 (2008)

    Continuous Variable Quantum Key Distribution with a Noisy Laser

    Get PDF
    Existing experimental implementations of continuous-variable quantum key distribution require shot-noise limited operation, achieved with shot-noise limited lasers. However, loosening this requirement on the laser source would allow for cheaper, potentially integrated systems. Here, we implement a theoretically proposed prepare-and-measure continuous-variable protocol and experimentally demonstrate the robustness of it against preparation noise stemming for instance from technical laser noise. Provided that direct reconciliation techniques are used in the post-processing we show that for small distances large amounts of preparation noise can be tolerated in contrast to reverse reconciliation where the key rate quickly drops to zero. Our experiment thereby demonstrates that quantum key distribution with non-shot-noise limited laser diodes might be feasible.Comment: 10 pages, 6 figures. Corrected plots for reverse reconciliatio
    • …
    corecore