784 research outputs found

    Improving state-of-theart continuous speech recognition systems using the N-best paradigm with neural networks

    Get PDF
    In an effort to advance the state of the art in continuous speech recognition employing hidden Markov models (HMM), Segmental Neural Nets (SNN) were introduced recently to ameliorate the wellknown limitations of HMMs, namely, the conditional-independence limitation and the relative difficulty with which HMMs can handle segmental features. We describe a hybrid SNN/I-IMM system that combines the speed and performance of our HMM system with the segmental modeling capabilities of SNNs. The integration of the two acoustic modeling techniques is achieved successfully via the N-best rescoring paradigm. The N-best lists are used not only for recognition, but also during training. This discriminative training using N-best is demonstrated to improve performance. When tested on the DARPA Resource Management speaker-independent corpus, the hybrid SNN/HMM system decreases the error by about 20% compared to the state-of-the-art HMM system

    Emotion Recognition from Acted and Spontaneous Speech

    Get PDF
    Dizertační práce se zabývá rozpoznáním emočního stavu mluvčích z řečového signálu. Práce je rozdělena do dvou hlavních častí, první část popisuju navržené metody pro rozpoznání emočního stavu z hraných databází. V rámci této části jsou představeny výsledky rozpoznání použitím dvou různých databází s různými jazyky. Hlavními přínosy této části je detailní analýza rozsáhlé škály různých příznaků získaných z řečového signálu, návrh nových klasifikačních architektur jako je například „emoční párování“ a návrh nové metody pro mapování diskrétních emočních stavů do dvou dimenzionálního prostoru. Druhá část se zabývá rozpoznáním emočních stavů z databáze spontánní řeči, která byla získána ze záznamů hovorů z reálných call center. Poznatky z analýzy a návrhu metod rozpoznání z hrané řeči byly využity pro návrh nového systému pro rozpoznání sedmi spontánních emočních stavů. Jádrem navrženého přístupu je komplexní klasifikační architektura založena na fúzi různých systémů. Práce se dále zabývá vlivem emočního stavu mluvčího na úspěšnosti rozpoznání pohlaví a návrhem systému pro automatickou detekci úspěšných hovorů v call centrech na základě analýzy parametrů dialogu mezi účastníky telefonních hovorů.Doctoral thesis deals with emotion recognition from speech signals. The thesis is divided into two main parts; the first part describes proposed approaches for emotion recognition using two different multilingual databases of acted emotional speech. The main contributions of this part are detailed analysis of a big set of acoustic features, new classification schemes for vocal emotion recognition such as “emotion coupling” and new method for mapping discrete emotions into two-dimensional space. The second part of this thesis is devoted to emotion recognition using multilingual databases of spontaneous emotional speech, which is based on telephone records obtained from real call centers. The knowledge gained from experiments with emotion recognition from acted speech was exploited to design a new approach for classifying seven emotional states. The core of the proposed approach is a complex classification architecture based on the fusion of different systems. The thesis also examines the influence of speaker’s emotional state on gender recognition performance and proposes system for automatic identification of successful phone calls in call center by means of dialogue features.

    Discriminative Segmental Cascades for Feature-Rich Phone Recognition

    Full text link
    Discriminative segmental models, such as segmental conditional random fields (SCRFs) and segmental structured support vector machines (SSVMs), have had success in speech recognition via both lattice rescoring and first-pass decoding. However, such models suffer from slow decoding, hampering the use of computationally expensive features, such as segment neural networks or other high-order features. A typical solution is to use approximate decoding, either by beam pruning in a single pass or by beam pruning to generate a lattice followed by a second pass. In this work, we study discriminative segmental models trained with a hinge loss (i.e., segmental structured SVMs). We show that beam search is not suitable for learning rescoring models in this approach, though it gives good approximate decoding performance when the model is already well-trained. Instead, we consider an approach inspired by structured prediction cascades, which use max-marginal pruning to generate lattices. We obtain a high-accuracy phonetic recognition system with several expensive feature types: a segment neural network, a second-order language model, and second-order phone boundary features

    Speech vocoding for laboratory phonology

    Get PDF
    Using phonological speech vocoding, we propose a platform for exploring relations between phonology and speech processing, and in broader terms, for exploring relations between the abstract and physical structures of a speech signal. Our goal is to make a step towards bridging phonology and speech processing and to contribute to the program of Laboratory Phonology. We show three application examples for laboratory phonology: compositional phonological speech modelling, a comparison of phonological systems and an experimental phonological parametric text-to-speech (TTS) system. The featural representations of the following three phonological systems are considered in this work: (i) Government Phonology (GP), (ii) the Sound Pattern of English (SPE), and (iii) the extended SPE (eSPE). Comparing GP- and eSPE-based vocoded speech, we conclude that the latter achieves slightly better results than the former. However, GP - the most compact phonological speech representation - performs comparably to the systems with a higher number of phonological features. The parametric TTS based on phonological speech representation, and trained from an unlabelled audiobook in an unsupervised manner, achieves intelligibility of 85% of the state-of-the-art parametric speech synthesis. We envision that the presented approach paves the way for researchers in both fields to form meaningful hypotheses that are explicitly testable using the concepts developed and exemplified in this paper. On the one hand, laboratory phonologists might test the applied concepts of their theoretical models, and on the other hand, the speech processing community may utilize the concepts developed for the theoretical phonological models for improvements of the current state-of-the-art applications

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Telephone speech recognition via the combination of knowledge sources in a segmental speech model

    Get PDF
    The currently dominant speech recognition methodology, Hidden Markov Modeling, treats speech as a stochastic random process with very simple mathematical properties. The simplistic assumptions of the model, and especially that of the independence of the observation vectors have been criticized by many in the literature, and alternative solutions have been proposed. One such alternative is segmental modeling, and the OASIS recognizer we have been working on in the recent years belongs to this category. In this paper we go one step further and suggest that we should consider speech recognition as a knowledge source combination problem. We offer a generalized algorithmic framework for this approach and show that both hidden Markov and segmental modeling are a special case of this decoding scheme. In the second part of the paper we describe the current components of the OASIS system and evaluate its performance on a very difficult recognition task, the phonetically balanced sentences of the MTBA Hungarian Telephone Speech Database. Our results show that OASIS outperforms a traditional HMM system in phoneme classification and achieves practically the same recognition scores at the sentence level
    corecore