679 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen GerĂ€ten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur fĂŒr Menschen mit neurologischen Verletzungen entwickelt, sondern auch fĂŒr ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfĂ€nglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser BemĂŒhungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial fĂŒr eine Vielzahl von Anwendungen, auch fĂŒr weniger stark eingeschrĂ€nkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hĂ€ngt jedoch auch von der VerfĂŒgbarkeit zuverlĂ€ssiger BCI-Hardware ab, die den Einsatz in der realen Welt gewĂ€hrleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was FlexibilitĂ€t und Effizienz bei der EEG-Signalverarbeitung gewĂ€hrleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewĂ€hrleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller MobilitĂ€t. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die FlexibilitĂ€t des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die fĂŒr verschiedene BCI-Anwendungen erforderlich ist. DarĂŒber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung fĂŒr mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte LeistungsfĂ€higkeit und Ausstattung fĂŒr ein mobiles BCI. Es erfĂŒllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg fĂŒr eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf fĂŒr die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard fĂŒr BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio
    • 

    corecore