76,032 research outputs found

    Nose Heat: Exploring Stress-induced Nasal Thermal Variability through Mobile Thermal Imaging

    Full text link
    Automatically monitoring and quantifying stress-induced thermal dynamic information in real-world settings is an extremely important but challenging problem. In this paper, we explore whether we can use mobile thermal imaging to measure the rich physiological cues of mental stress that can be deduced from a person's nose temperature. To answer this question we build i) a framework for monitoring nasal thermal variable patterns continuously and ii) a novel set of thermal variability metrics to capture a richness of the dynamic information. We evaluated our approach in a series of studies including laboratory-based psychosocial stress-induction tasks and real-world factory settings. We demonstrate our approach has the potential for assessing stress responses beyond controlled laboratory settings

    An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work.

    Get PDF
    Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors' efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing
    • 

    corecore