85 research outputs found

    A New framework for an electrophotographic printer model

    Get PDF
    Digital halftoning is a printing technology that creates the illusion of continuous tone images for printing devices such as electrophotographic printers that can only produce a limited number of tone levels. Digital halftoning works because the human visual system has limited spatial resolution which blurs the printed dots of the halftone image, creating the gray sensation of a continuous tone image. Because the printing process is imperfect it introduces distortions to the halftone image. The quality of the printed image depends, among other factors, on the complex interactions between the halftone image, the printer characteristics, the colorant, and the printing substrate. Printer models are used to assist in the development of new types of halftone algorithms that are designed to withstand the effects of printer distortions. For example, model-based halftone algorithms optimize the halftone image through an iterative process that integrates a printer model within the algorithm. The two main goals of a printer model are to provide accurate estimates of the tone and of the spatial characteristics of the printed halftone pattern. Various classes of printer models, from simple tone calibrations, to complex mechanistic models, have been reported in the literature. Existing models have one or more of the following limiting factors: they only predict tone reproduction, they depend on the halftone pattern, they require complex calibrations or complex calculations, they are printer specific, they reproduce unrealistic dot structures, and they are unable to adapt responses to new data. The two research objectives of this dissertation are (1) to introduce a new framework for printer modeling and (2) to demonstrate the feasibility of such a framework in building an electrophotographic printer model. The proposed framework introduces the concept of modeling a printer as a texture transformation machine. The basic premise is that modeling the texture differences between the output printed images and the input images encompasses all printing distortions. The feasibility of the framework was tested with a case study modeling a monotone electrophotographic printer. The printer model was implemented as a bank of feed-forward neural networks, each one specialized in modeling a group of textural features of the printed halftone pattern. The textural features were obtained using a parametric representation of texture developed from a multiresolution decomposition proposed by other researchers. The textural properties of halftone patterns were analyzed and the key texture parameters to be modeled by the bank were identified. Guidelines for the multiresolution texture decomposition and the model operational parameters and operational limits were established. A method for the selection of training sets based on the morphological properties of the halftone patterns was also developed. The model is fast and has the capability to continue to learn with additional training. The model can be easily implemented because it only requires a calibrated scanner. The model was tested with halftone patterns representing a range of spatial characteristics found in halftoning. Results show that the model provides accurate predictions for the tone and the spatial characteristics when modeling halftone patterns individually and it provides close approximations when modeling multiple halftone patterns simultaneously. The success of the model justifies continued research of this new printer model framework

    Robustness of a DFT based image watermarking method against am halftoning

    Get PDF
    U ovom radu je evaluirana otpornost na rastriranje metode označavanja slika bazirane na diskretnoj Fourierovoj transformaciji (DFT). Rastriranje se koristi za reprodukciju višetonskih slika. U istraživanju je korišten set od 1000 slika. Za rastriranje su korištena tri različita oblika rasterskog elementa (točka, elipsa i linija) i 5 različitih linijatura (10, 13, 15, 40 i 60 lin/cm). Evaluirana je vjerojatnost detekcije i distribucija postignutih vrijednosti detekcije. Rezultati su pokazali da je ispitivana metoda označavanja slika otporna na rastriranje linijaturama većim od 15 lin/cm. Također, zaključeno je da oblik rasterskog elementa ima slab utjecaj na stupanj detekcije.In this paper the robustness of a Discrete Fourier Transform (DFT) based image watermarking scheme to amplitude modulation (AM) halftoning is evaluated. Halftoning is used for reproduction of continuous images. Thus, it is important that a watermarking method is robust to halftoning. Three different shapes of clustered dots of AM (Amplitude Modulation) halftones are used (round, ellipse and line) with five different halftone frequencies (10, 13, 15, 40, and 60 line/cm). The tests where done on a dataset of 1000 images. As the metric of robustness, watermark detection rate, distribution of detection values, and ROC (Receiver Operation Characteristic) curves were used. The results showed that the watermarking scheme is robust to halftoning for halftone frequencies greater than 15 line/cm. Also, the type of AM halftone used has almost no effect on a detection rate

    A Calibration study of a still video system and photomatic color separation program

    Get PDF
    None provided

    Digital Signal Processing

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.National Science Foundation FellowshipNational Science Foundation (Grant ECS 84-07285)National Science Foundation (Grant MIP 87-14969)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Scholarship from the Federative Republic of BrazilU.S. Air Force - Electronic Systems Division (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et I'Aide a la Recherche Postgraduate FellowshipSanders Associates, Inc.OKI Semiconductor, Inc.Tel Aviv University, Department of Electronic SystemsU.S. Navy - Office of Naval Research (Contract N00014-85-K-0272)Natural Sciences and Engineering Research Council of Canada, Science and Engineering Scholarshi

    Minimization of Halftone Noise in FLAT Regions for Improved Print Quality

    Get PDF
    The work in this thesis proposes a novel algorithm for enhancing the quality of flat regions in printed color image documents. The algorithm is designed to identify the flat regions based on certain criteria and filter these regions to minimize the noise prior and post Halftoning so as to make the hard copy look visibly pleasing. Noise prior to halftone process is removed using a spatial Gaussian filter together with a Hamming window, concluded from results after implementing various filtering techniques. A clustered dithering is applied in each channel of the image as Halftoning process. Furthermore, to minimize the post halftone noise, the halftone structure of the image is manipulated according to the neighboring sub-cells in their respective channels. This is done to reduce the brightness variation (a cause for noise) between the neighboring subcells. Experimental results show that the proposed algorithm efficiently minimizes noise in flat regions of mirumal gradient change in color images

    A mathematical analysis of an electronic dot generating scanner for dot resolution and tone reproduction

    Get PDF
    An electronic dot generating scanner is a complex machine. This complexity is based in the photographic methods which the scanner is designed to duplicate. This study addresses the mathematical principles of the entire scanner system. This paper was intended to provide an improved understanding of the scanner system. The hypothesis states that a mathematical analysis with experimental verification can be developed to accurately model the internal optics, tone reproduction, and output dot characteristics of an electronic dot generating scanner. The analysis begins with a functional block diagram, which shows the information flow through the scanner. This diagram breaks the process into its smaller components and provides the framework for the mathematical analysis. The diagram has an accompanying word description for each section of the scanner. The basic function of the scanning optics, data compression, gradation, color correction, digitization, halftone screening, and film exposure is discussed for the scanner system. The system characterization develops a mathematical analysis based on the functional block diagram. It details the theory behind each section of the scanner. Fourier optics, electrical engineering, and photographic tone reproduction theories are applied to the various scanner functions. The scanning optical system is analyzed using Fourier transform techniques to describe the effect of the imaging system on image transmission. Modulation Transfer Functions (MTFs) are used to show the output frequency spectrum of the scanning aperture. The electronic unsharp masking is modeled by using an optically equivalent process. The photomultiplier and associated data compression\u27s effect on the reproduction of shadow detail is demonstrated graphically. The improvement in the photomultiplier response is noted due to logarithmic compression. The flexibility of the gradation processing is demonstrated through a graphical representation of the treatment of a typical signal. The gradation selection provides the operator with the ability to tailor the output to the reproduction requirements of each transparency. This flexibility is a great advantage, if properly utilized, because it allows customization of each separation. The color computer is described in general terms. The subjective manner, which color correction is determined is not addressed in this paper. Digitization is described with its associated compromises in signal integrity. The sampling and quantization processes are detailed. The screening computer and linearization together effectively transform a digitized gray level into a dot on film. The linearization sets up the scanner for its processing environment. The output signal from the screening computer drives a laser modulator, which controls the light traveling through the fiber optic cables to expose the film. The film is developed to produce the final separation. An experimental tone reproduction curve was produced. The type of curve produced versus the expected is discussed. The input/output characteristics are examined through the scanning of a UGRA resolution wedge. The UGRA wedge input and separation film output is analyzed using microphotographic methods to examine structure. This hypothesis was not proven because of the many assumptions required by the scope of this project, which made the prediction of overall systems results not possible. Although, each function (minus color correction) of the scanner is analyzed. This model of the entire scanning system from input optics through the final film exposure can be utilized to improve understanding of the entire scanner system

    Automatic evaluation of interferograms

    Get PDF
    A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given
    corecore