508,229 research outputs found

    Continuous maintenance and the future ā€“ Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ā€˜big dataā€™ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Evolution of self-maintaining cellular information processing networks

    Get PDF
    We examine the role of self-maintenance (collective autocatalysis) in the evolution of computational biochemical networks. In primitive proto-cells (lacking separate genetic machinery) self-maintenance is a necessary condition for the direct reproduction and inheritance of what we here term Cellular Information Processing Networks (CIPNs). Indeed, partially reproduced or defective CIPNs may generally lead to malfunctioning or premature death of affected cells. We explore the interaction of this self-maintenance property with the evolution and adaptation of CIPNs capable of distinct information processing abilities. We present an evolutionary simulation platform capable of evolving artificial CIPNs from a bottom-up perspective. This system is an agent-based multi-level selectional Artificial Chemistry (AC) which employs a term rewriting system called the Molecular Classifier System (MCS). The latter is derived from the Holland broadcast language formalism. Using this system, we successfully evolve an artificial CIPN to improve performance on a simple pre-specified information processing task whilst subject to the constraint of continuous self-maintenance. We also describe the evolution of self-maintaining, crosstalking and multitasking, CIPNs exhibiting a higher level of topological and functional complexity. This proof of concept aims at contributing to the understanding of the open-ended evolutionary growth of complexity in artificial systems
    • ā€¦
    corecore