1,879 research outputs found

    ScaleTrotter: Illustrative Visual Travels Across Negative Scales

    Full text link
    We present ScaleTrotter, a conceptual framework for an interactive, multi-scale visualization of biological mesoscale data and, specifically, genome data. ScaleTrotter allows viewers to smoothly transition from the nucleus of a cell to the atomistic composition of the DNA, while bridging several orders of magnitude in scale. The challenges in creating an interactive visualization of genome data are fundamentally different in several ways from those in other domains like astronomy that require a multi-scale representation as well. First, genome data has intertwined scale levels---the DNA is an extremely long, connected molecule that manifests itself at all scale levels. Second, elements of the DNA do not disappear as one zooms out---instead the scale levels at which they are observed group these elements differently. Third, we have detailed information and thus geometry for the entire dataset and for all scale levels, posing a challenge for interactive visual exploration. Finally, the conceptual scale levels for genome data are close in scale space, requiring us to find ways to visually embed a smaller scale into a coarser one. We address these challenges by creating a new multi-scale visualization concept. We use a scale-dependent camera model that controls the visual embedding of the scales into their respective parents, the rendering of a subset of the scale hierarchy, and the location, size, and scope of the view. In traversing the scales, ScaleTrotter is roaming between 2D and 3D visual representations that are depicted in integrated visuals. We discuss, specifically, how this form of multi-scale visualization follows from the specific characteristics of the genome data and describe its implementation. Finally, we discuss the implications of our work to the general illustrative depiction of multi-scale data

    Physics-based visual characterization of molecular interaction forces

    Get PDF
    Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts. There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved. In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.Peer ReviewedPostprint (author's final draft

    Interactive Visualization of Molecular Dynamics Simulation Data

    Get PDF
    Molecular Dynamics Simulations (MD) plays an essential role in the field of computational biology. The simulations produce extensive high-dimensional, spatio-temporal data describ-ing the motion of atoms and molecules. A central challenge in the field is the extraction and visualization of useful behavioral patterns from these simulations. Throughout this thesis, I collaborated with a computational biologist who works on Molecular Dynamics (MD) Simu-lation data. For the sake of exploration, I was provided with a large and complex membrane simulation. I contributed solutions to his data challenges by developing a set of novel visual-ization tools to help him get a better understanding of his simulation data. I employed both scientific and information visualization, and applied concepts of abstraction and dimensions projection in the proposed solutions. The first solution enables the user to interactively fil-ter and highlight dynamic and complex trajectory constituted by motions of molecules. The molecular dynamic trajectories are identified based on path length, edge length, curvature, and normalized curvature, and their combinations. The tool exploits new interactive visual-ization techniques and provides a combination of 2D-3D path rendering in a dual dimension representation to highlight differences arising from the 2D projection on a plane. The sec-ond solution introduces a novel abstract interaction space for Protein-Lipid interaction. The proposed solution addresses the challenge of visualizing complex, time-dependent interactions between protein and lipid molecules. It also proposes a fast GPU-based implementation that maps lipid-constituents involved in the interaction onto the abstract protein interaction space. I also introduced two abstract level-of-detail (LoD) representations with six levels of detail for lipid molecules and protein interaction. Finally, I proposed a novel framework consisting of four linked views: A time-dependent 3D view, a novel hybrid view, a clustering timeline, and a details-on-demand window. The framework exploits abstraction and projection to enable the user to study the molecular interaction and the behavior of the protein-protein interaction and clusters. I introduced a selection of visual designs to convey the behavior of protein-lipid interaction and protein-protein interaction through a unified coordinate system. Abstraction is used to present proteins in hybrid 2D space, and a projected tiled space is used to present both Protein-Lipid Interaction (PLI) and Protein-Protein Interaction (PPI) at the particle level in a heat-map style visual design. Glyphs are used to represent PPI at the molecular level. I coupled visually separable visual designs in a unified coordinate space. The result lets the user study both PLI and PPI separately, or together in a unified visual analysis framework

    A general illumination model for molecular visualization

    Get PDF
    Several visual representations have been developed over the years to visualize molecular structures, and to enable a better understanding of their underlying chemical processes. Today, the most frequently used atom-based representations are the Space-filling, the Solvent Excluded Surface, the Balls-and-Sticks, and the Licorice models. While each of these representations has its individual benefits, when applied to large-scale models spatial arrangements can be difficult to interpret when employing current visualization techniques. In the past it has been shown that global illumination techniques improve the perception of molecular visualizations; unfortunately existing approaches are tailored towards a single visual representation. We propose a general illumination model for molecular visualization that is valid for different representations. With our illumination model, it becomes possible, for the first time, to achieve consistent illumination among all atom-based molecular representations. The proposed model can be further evaluated in real-time, as it employs an analytical solution to simulate diffuse light interactions between objects. To be able to derive such a solution for the rather complicated and diverse visual representations, we propose the use of regression analysis together with adapted parameter sampling strategies as well as shape parametrization guided sampling, which are applied to the geometric building blocks of the targeted visual representations. We will discuss the proposed sampling strategies, the derived illumination model, and demonstrate its capabilities when visualizing several dynamic molecules.Peer ReviewedPostprint (author's final draft

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2
    corecore