356 research outputs found

    Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach

    Get PDF
    In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach

    Robust Adaptive Control of Linear Parameter-Varying Systems with Unmatched Uncertainties

    Full text link
    This paper presents a robust adaptive control solution for linear parameter-varying (LPV) systems with unknown input gain and unmatched nonlinear (state- and time-dependent) uncertainties based on the L1\mathcal{L}_1 adaptive control architecture and peak-to-peak gain (PPG) analysis/minimization from robust control. Specifically, we introduce new tools for stability and performance analysis leveraging the PPG bound of an LPV system that is computable using linear matrix inequality (LMI) techniques. A piecewise-constant estimation law is introduced to estimate the lumped uncertainty with quantifiable error bounds, which can be systematically improved by reducing the estimation sampling time. We also present a new approach to attenuate the unmatched uncertainty based on the PPG minimization that is applicable to a broad class of systems with linear nominal dynamics. In addition, we derive transient and steady-state performance bounds in terms of the input and output signals of the actual closed-loop system as compared to the same signals of a virtual reference system that represents the possibly best achievable performance. Under mild assumptions, we prove that the transient performance bounds can be uniformly reduced by decreasing the estimation sampling time, which is subject only to hardware limitations. The theoretical development is validated by extensive simulations on the short-period dynamics of an F-16 aircraft

    Integral sliding mode fault tolerant control allocation for a class of affine nonlinear system

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from the literature. Good simulation results show the efficacy of the scheme

    Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems

    Get PDF
    This paper proposes a novel decentralized output sliding-mode fault-tolerant control (FTC) design for heterogeneous multiagent systems (MASs) with matched disturbances, unmatched nonlinear interactions, and actuator faults. The respective iteration and iteration-free algorithms in the sliding-mode FTC scheme are designed with adaptive upper bounding laws to automatically compensate the matched and unmatched components. Then, a continuous fault-tolerant protocol in the observer-based integral sliding-mode design is developed to guarantee the asymptotic stability of MASs and the ultimate boundedness of the estimation errors. Simulation results validate the efficiency of the proposed FTC algorithm

    Offset-free feedback linearisation control of a three-phase grid-connected photovoltaic system

    Get PDF
    In this study, a state feedback control law is combined with a disturbance observer to enhance disturbance rejection capability of a grid-connected photovoltaic (PV) inverter. The control law is based on input-output feedback linearisation technique, while the existing disturbance observer is simplified and adopted for the system under investigation. The resulting control law has a proportional-integral (PI)/almost PI-derivative-like structure, which is convenient for real-time implementation. The objective of the proposed approach is to improve the DC-bus voltage regulation, while at the same time control the power exchange between the PV system and the grid. The stability of the closed-loop system under the composite controller is guaranteed by simple design parameters. Both simulation and experimental results show that the proposed method has significant abilities to initiate fast current control and accurate adjustment of the DC-bus voltage under model uncertainty and external disturbance

    Robust fault tolerant control of induction motor system

    Get PDF
    Research into fault tolerant control (FTC, a set of techniques that are developed to increase plant availability and reduce the risk of safety hazards) for induction motors is motivated by practical concerns including the need for enhanced reliability, improved maintenance operations and reduced cost. Its aim is to prevent that simple faults develop into serious failure. Although, the subject of induction motor control is well known, the main topics in the literature are concerned with scalar and vector control and structural stability. However, induction machines experience various fault scenarios and to meet the above requirements FTC strategies based on existing or more advanced control methods become desirable. Some earlier studies on FTC have addressed particular problems of 3-phase sensor current/voltage FTC, torque FTC, etc. However, the development of these methods lacks a more general understanding of the overall problem of FTC for an induction motor based on a true fault classification of possible fault types.In order to develop a more general approach to FTC for induction motors, i.e. not just designing specific control approaches for individual induction motor fault scenarios, this thesis has carried out a systematic research on induction motor systems considering the various faults that can typically be present, having either “additive” fault or “multiplicative” effects on the system dynamics, according to whether the faults are sensor or actuator (additive fault) types or component or motor faults (multiplicative fault) types.To achieve the required objectives, an active approach to FTC is used, making use of fault estimation (FE, an approach that determine the magnitude of a fault signal online) and fault compensation. This approach of FTC/FE considers an integration of the electrical and mechanical dynamics, initially using adaptive and/or sliding mode observers, Linear Parameter Varying (LPV, in which nonlinear systems are locally decomposed into several linear systems scheduled by varying parameters) and then using back-stepping control combined with observer/estimation methods for handling certain forms of nonlinearity.In conclusion, the thesis proposed an integrated research of induction motor FTC/FE with the consideration of different types of faults and different types of uncertainties, and validated the approaches through simulations and experiments

    Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer

    Full text link
    [EN] The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.PROMETEOII/2013/004; Conselleria d'Educacio; Generalitat Valenciana, Grant/Award Number: TIN2014-56158-C4-4-P-AR; Ministerio de Economia y Competitividad, Grant/Award Number: FPI-UPV 2014; Universitat Politecnica de ValenciaSanz Diaz, R.; GarcĂ­a Gil, PJ.; Fridman, E.; Albertos PĂ©rez, P. (2018). Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer. International Journal of Robust and Nonlinear Control. 28(6):2457-2467. https://doi.org/10.1002/rnc.4027S24572467286Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684GarcĂ­a, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010LĂ©chappĂ©, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, GreeceNajafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627LĂ©chappĂ© V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NVCacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.00

    Second order sliding mode control of underactuated Mechanical systems I: Local stabilization with application to an inverted pendulum

    Get PDF
    International audienceSecond order sliding mode control synthesis is developed for underactuated mechanical systems, operating under uncertainty conditions. In order to locally stabilize an underactuated system around an unstable equilibrium, an output is specified in such a way that the corresponding zero dynamics is locally asymptotically stable. Then, the desired stability property of the closed-loop system is provided by applying a quasihomogeneous second order sliding mode controller, driving the system to the zero dynamics manifold in finite time. Although the present synthesis exhibits an infinite number of switches on a finite time interval, it does not rely on the generation of first order sliding modes, while providing robustness features similar to those possessed by their standard sliding mode counterparts. A second order sliding mode appears on the zero dynamics manifold which is of co-dimension greater than the control space dimension. Performance issues of the proposed synthesis are illustrated in numerical and experimental studies of a cart-Pendulum system
    • 

    corecore