35,103 research outputs found

    A Realist Interpretation of the Quantum Measurement Problem

    Full text link
    A new, realist interpretation of the quantum measurement processes is given. In this scenario a quantum measurement is a non-equilibrium phase transition in a ``resonant cavity'' formed by the entire physical universe including all its material and energy content. Both the amplitude and the phase of the quantum mechanical wavefunction acquire substantial meaning in this picture, and the probabilistic element is removed from the foundations of quantum mechanics, its apparent presence in the quantum measurement process is viewed as a result of the sensitive dependence on initial/boundary conditions of the non-equilibrium phase transitions in a many degree-of-freedom system. The implications of adopting this realist ontology to the clarification and resolution of lingering issues in the foundations of quantum mechanics, such as wave-particle duality, Heisenberg's uncertainty relation, Schrodinger's Cat paradox, first and higher order coherence of photons and atoms, virtual particles, the existence of commutation relations and quantized behavior, etc., are also presented.Comment: 8 pages, submiited to the Proceedings of the international conference "Albert Einstein Century", held July 2005 in Paris, Franc

    Shock dynamics of phase diagrams

    Get PDF
    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts

    Strong-disorder magnetic quantum phase transitions: Status and new developments

    Get PDF
    This article reviews the unconventional effects of random disorder on magnetic quantum phase transitions, focusing on a number of new experimental and theoretical developments during the last three years. On the theory side, we address smeared quantum phase transitions tuned by changing the chemical composition, for example in alloys of the type A1−x_{1-x}Bx_x. We also discuss how the interplay of order parameter conservation and overdamped dynamics leads to enhanced quantum Griffiths singularities in disordered metallic ferromagnets. Finally, we discuss a semiclassical theory of transport properties in quantum Griffiths phases. Experimental examples include the ruthenates Sr1−x_{1-x}Cax_xRuO3_3 and (Sr1−x_{1-x}Cax_x)3_3Ru2_2O7_7 as well as Ba(Fe1−x_{1-x}Mnx_x)2_2As2_2.Comment: 9 pages, 2 figures, Proceedings of the International Conference on Recent Progress in Many-Body Theories 17, final version as publishe

    Critical behavior of a one-dimensional fixed-energy stochastic sandpile

    Get PDF
    We study a one-dimensional fixed-energy version (that is, with no input or loss of particles), of Manna's stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value ζc\zeta_c of the particle density. Critical exponents are obtained from extensive simulations, which treat both stationary and transient properties. In contrast with other one-dimensional sandpiles, the model appears to exhibit finite-size scaling, though anomalies exist in the scaling of relaxation times and in the approach to the stationary state. The latter appear to depend strongly on the nature of the initial configuration. The critical exponents differ from those expected at a linear interface depinning transition in a medium with point disorder, and from those of directed percolation.Comment: 15 pages, 11 figure

    Spectroscopy of soft modes and quantum phase transitions in coupled electron bilayers

    Full text link
    Strongly-correlated two-dimensional electrons in coupled semiconductor bilayers display remarkable broken symmetry many-body states under accessible and controllable experimental conditions. In the cases of continuous quantum phase transitions soft collective modes drive the transformations that link distinct ground states of the electron double layers. In this paper we consider results showing that resonant inelastic light scattering methods detect soft collective modes of the double layers and probe their evolution with temperature and magnetic field. The light scattering experiments offer venues of research of fundamental interactions and continuous quantum phase transitions in low-dimensional electron liquids.Comment: 10 pages, 7 figure
    • …
    corecore