47 research outputs found

    Video Quality Prediction for Video over Wireless Access Networks (UMTS and WLAN)

    Get PDF
    Transmission of video content over wireless access networks (in particular, Wireless Local Area Networks (WLAN) and Third Generation Universal Mobile Telecommunication System (3G UMTS)) is growing exponentially and gaining popularity, and is predicted to expose new revenue streams for mobile network operators. However, the success of these video applications over wireless access networks very much depend on meeting the user’s Quality of Service (QoS) requirements. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet user’s QoS requirements. Video quality is affected by distortions caused by the encoder and the wireless access network. The impact of these distortions is content dependent, but this feature has not been widely used in existing video quality prediction models. The main aim of the project is the development of novel and efficient models for video quality prediction in a non-intrusive way for low bitrate and resolution videos and to demonstrate their application in QoS-driven adaptation schemes for mobile video streaming applications. This led to five main contributions of the thesis as follows:(1) A thorough understanding of the relationships between video quality, wireless access network (UMTS and WLAN) parameters (e.g. packet/block loss, mean burst length and link bandwidth), encoder parameters (e.g. sender bitrate, frame rate) and content type is provided. An understanding of the relationships and interactions between them and their impact on video quality is important as it provides a basis for the development of non-intrusive video quality prediction models.(2) A new content classification method was proposed based on statistical tools as content type was found to be the most important parameter. (3) Efficient regression-based and artificial neural network-based learning models were developed for video quality prediction over WLAN and UMTS access networks. The models are light weight (can be implemented in real time monitoring), provide a measure for user perceived quality, without time consuming subjective tests. The models have potential applications in several other areas, including QoS control and optimization in network planning and content provisioning for network/service providers.(4) The applications of the proposed regression-based models were investigated in (i) optimization of content provisioning and network resource utilization and (ii) A new fuzzy sender bitrate adaptation scheme was presented at the sender side over WLAN and UMTS access networks. (5) Finally, Internet-based subjective tests that captured distortions caused by the encoder and the wireless access network for different types of contents were designed. The database of subjective results has been made available to research community as there is a lack of subjective video quality assessment databases.Partially sponsored by EU FP7 ADAMANTIUM Project (EU Contract 214751

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Dynamic adaptive video streaming with minimal buffer sizes

    Get PDF
    Recently, adaptive streaming has been widely adopted in video streaming services to improve the Quality-of-Experience (QoE) of video delivery over the Internet. However, state-of-the-art bitrate adaptation achieves satisfactory performance only with extensive buffering of several tens of seconds. This leads to high playback latency in video delivery, which is undesirable especially in the context of live content with a low upper bound on the latency. Therefore, this thesis aims at pushing the application of adaptive streaming to its limit with respect to the buffer size, which is the dominant factor of the streaming latency. In this work, we first address the minimum buffering size required in adaptive streaming, which provides us with guidelines to determine a reasonable low latency for streaming systems. Then, we tackle the fundamental challenge of achieving such a low-latency streaming by developing a novel adaptation algorithm that stabilizes buffer dynamics despite a small buffer size. We also present advanced improvements by designing a novel adaptation architecture with low-delay feedback for the bitrate selection and optimizing the underlying transport layer to offer efficient realtime streaming. Experimental evaluations demonstrate that our approach achieves superior QoE in adaptive video streaming, especially in the particularly challenging case of low-latency streaming.In letzter Zeit setzen immer mehr Anbieter von Video-Streaming im Internet auf adaptives Streaming um die Nutzererfahrung (QoE) zu verbessern. Allerdings erreichen aktuelle Bitrate-Adaption-Algorithmen nur dann eine zufriedenstellende Leistung, wenn sehr große Puffer in der Größenordnung von mehreren zehn Sekunden eingesetzt werden. Dies führt zu großen Latenzen bei der Wiedergabe, was vor allem bei Live-Übertragungen mit einer niedrigen Obergrenze für Verzögerungen unerwünscht ist. Aus diesem Grund zielt die vorliegende Dissertation darauf ab adaptive Streaming-Anwendung im Bezug auf die Puffer-Größe zu optimieren da dies den Hauptfaktor für die Streaming-Latenz darstellt. In dieser Arbeit untersuchen wir zuerst die minimale benötigte Puffer-Größe für adaptives Streaming, was uns ermöglicht eine sinnvolle Untergrenze für die erreichbare Latenz festzulegen. Im nächsten Schritt gehen wir die grundlegende Herausforderung an dieses Optimum zu erreichen. Hierfür entwickeln wir einen neuartigen Adaptionsalgorithmus, der es ermöglicht den Füllstand des Puffers trotz der geringen Größe zu stabilisieren. Danach präsentieren wir weitere Verbesserungen indem wir eine neue Adaptions-Architektur für die Datenraten-Anpassung mit geringer Feedback-Verzögerung designen und das darunter liegende Transportprotokoll optimieren um effizientes Echtzeit-Streaming zu ermöglichen. Durch experimentelle Prüfung zeigen wir, dass unser Ansatz eine verbesserte Nutzererfahrung für adaptives Streaming erreicht, vor allem in besonders herausfordernden Fällen, wenn Streaming mit geringer Latenz gefordert ist

    Entrega de conteúdos multimédia em over-the-top: caso de estudo das gravações automáticas

    Get PDF
    Doutoramento em Engenharia EletrotécnicaOver-The-Top (OTT) multimedia delivery is a very appealing approach for providing ubiquitous, exible, and globally accessible services capable of low-cost and unrestrained device targeting. In spite of its appeal, the underlying delivery architecture must be carefully planned and optimized to maintain a high Qualityof- Experience (QoE) and rational resource usage, especially when migrating from services running on managed networks with established quality guarantees. To address the lack of holistic research works on OTT multimedia delivery systems, this Thesis focuses on an end-to-end optimization challenge, considering a migration use-case of a popular Catch-up TV service from managed IP Television (IPTV) networks to OTT. A global study is conducted on the importance of Catch-up TV and its impact in today's society, demonstrating the growing popularity of this time-shift service, its relevance in the multimedia landscape, and tness as an OTT migration use-case. Catch-up TV consumption logs are obtained from a Pay-TV operator's live production IPTV service containing over 1 million subscribers to characterize demand and extract insights from service utilization at a scale and scope not yet addressed in the literature. This characterization is used to build demand forecasting models relying on machine learning techniques to enable static and dynamic optimization of OTT multimedia delivery solutions, which are able to produce accurate bandwidth and storage requirements' forecasts, and may be used to achieve considerable power and cost savings whilst maintaining a high QoE. A novel caching algorithm, Most Popularly Used (MPU), is proposed, implemented, and shown to outperform established caching algorithms in both simulation and experimental scenarios. The need for accurate QoE measurements in OTT scenarios supporting HTTP Adaptive Streaming (HAS) motivates the creation of a new QoE model capable of taking into account the impact of key HAS aspects. By addressing the complete content delivery pipeline in the envisioned content-aware OTT Content Delivery Network (CDN), this Thesis demonstrates that signi cant improvements are possible in next-generation multimedia delivery solutions.A entrega de conteúdos multimédia em Over-The-Top (OTT) e uma proposta atractiva para fornecer um serviço flexível e globalmente acessível, capaz de alcançar qualquer dispositivo, com uma promessa de baixos custos. Apesar das suas vantagens, e necessario um planeamento arquitectural detalhado e optimizado para manter níveis elevados de Qualidade de Experiência (QoE), em particular aquando da migração dos serviços suportados em redes geridas com garantias de qualidade pré-estabelecidas. Para colmatar a falta de trabalhos de investigação na área de sistemas de entrega de conteúdos multimédia em OTT, esta Tese foca-se na optimização destas soluções como um todo, partindo do caso de uso de migração de um serviço popular de Gravações Automáticas suportado em redes de Televisão sobre IP (IPTV) geridas, para um cenário de entrega em OTT. Um estudo global para aferir a importância das Gravações Automáticas revela a sua relevância no panorama de serviços multimédia e a sua adequação enquanto caso de uso de migração para cenários OTT. São obtidos registos de consumos de um serviço de produção de Gravações Automáticas, representando mais de 1 milhão de assinantes, para caracterizar e extrair informação de consumos numa escala e âmbito não contemplados ate a data na literatura. Esta caracterização e utilizada para construir modelos de previsão de carga, tirando partido de sistemas de machine learning, que permitem optimizações estáticas e dinâmicas dos sistemas de entrega de conteúdos em OTT através de previsões das necessidades de largura de banda e armazenamento, potenciando ganhos significativos em consumo energético e custos. Um novo mecanismo de caching, Most Popularly Used (MPU), demonstra um desempenho superior as soluções de referencia, quer em cenários de simulação quer experimentais. A necessidade de medição exacta da QoE em streaming adaptativo HTTP motiva a criaçao de um modelo capaz de endereçar aspectos específicos destas tecnologias adaptativas. Ao endereçar a cadeia completa de entrega através de uma arquitectura consciente dos seus conteúdos, esta Tese demonstra que são possíveis melhorias de desempenho muito significativas nas redes de entregas de conteúdos em OTT de próxima geração

    Advanced modelling of adaptive bitrate selection

    Get PDF
    Nowadays, a typical video content provider serves a variety of platforms e.g. smartphones, web browsers, and smart TVs. Each of these platforms has specific requirements with respect to transmission and video quality. Moreover, since these devices are increasingly being used on-the-go, the environment within which most of these video streaming clients operate is both unreliable and time-varying. To cater for these heterogeneous requirements, content providers are increasingly adopting adaptive streaming services. Through such services, the quality of the video content received by a user is adapted to fit its specific requirements and capabilities. To adapt the video quality, system capabilities such as network capacity and memory have to be continuously monitored and measured, chunk requests have to be scheduled, and then the optimal video rate has to be decided. Each of these tasks is usually managed by a sub-module of the adaptive bitrate selection function. However, these sub-components interact in a non-trivial manner. For example, while on-off chunk scheduling helps to prevent buffer overflow, it negatively affects the TCP throughput. Hence, these complex interactions between these different sub-components of the adaptive streaming algorithm result in unnecessary rebufferings, undesirable variability, and sub-optimal video quality. To help simplify these interactions, this thesis develops several frameworks and models that define the relationships between the various components of the adaptive bitrate selection system. This includes deriving the valid system state space, which defines the state that an algorithm can be in at any given time, determining the allowable interactions between the various components, and identifying the video quality evolution rules that optimise QoE. Using this information, some state-of-the-art algorithms are improved and novel ones developed to demonstrate the effectiveness of the proposed approach. The result of extensive evaluations conducted both within a real-world Internet environment and with network trace shows the proposed schemes help in reducing the convergence time, startup delay, and rebuffering events, while at the same time increasing both the average and the stability of the video quality. All this is obtained without any adverse impact on the fairness among the competing players

    Device characteristics-based differentiated energy-efficient adaptive solution for multimedia delivery over heterogeneous wireless networks

    Get PDF
    Energy efficiency is a key issue of highest importance to mobile wireless device users, as those devices are powered by batteries with limited power capacity. It is of very high interest to provide device differentiated user centric energy efficient multimedia content delivery based on current application type, energy-oriented device features and user preferences. This thesis presents the following research contributions in the area of energy efficient multimedia delivery over heterogeneous wireless networks: 1. ASP: Energy-oriented Application-based System profiling for mobile devices: This profiling provides services to other contributions in this thesis. By monitoring the running applications and the corresponding power demand on the smart mobile device, a device energy model is obtained. The model is used in conjunction with applications’ power signature to provide device energy constraints posed by running applications. 2. AWERA 3. DEAS: A Device characteristics-based differentiated Energy-efficient Adaptive Solution for video delivery over heterogeneous wireless networks. Based on the energy constraint, DEAS performs energy efficient content delivery adaptation for the current application. Unlike the existing solutions, DEAS takes all the applications running on the system into account and better balances QoS and energy efficiency. 4. EDCAM 5. A comprehensive survey on state-of-the-art energy-efficient network protocols and energy-saving network technologies

    Content-Aware Multimedia Communications

    Get PDF
    The demands for fast, economic and reliable dissemination of multimedia information are steadily growing within our society. While people and economy increasingly rely on communication technologies, engineers still struggle with their growing complexity. Complexity in multimedia communication originates from several sources. The most prominent is the unreliability of packet networks like the Internet. Recent advances in scheduling and error control mechanisms for streaming protocols have shown that the quality and robustness of multimedia delivery can be improved significantly when protocols are aware of the content they deliver. However, the proposed mechanisms require close cooperation between transport systems and application layers which increases the overall system complexity. Current approaches also require expensive metrics and focus on special encoding formats only. A general and efficient model is missing so far. This thesis presents efficient and format-independent solutions to support cross-layer coordination in system architectures. In particular, the first contribution of this work is a generic dependency model that enables transport layers to access content-specific properties of media streams, such as dependencies between data units and their importance. The second contribution is the design of a programming model for streaming communication and its implementation as a middleware architecture. The programming model hides the complexity of protocol stacks behind simple programming abstractions, but exposes cross-layer control and monitoring options to application programmers. For example, our interfaces allow programmers to choose appropriate failure semantics at design time while they can refine error protection and visibility of low-level errors at run-time. Based on some examples we show how our middleware simplifies the integration of stream-based communication into large-scale application architectures. An important result of this work is that despite cross-layer cooperation, neither application nor transport protocol designers experience an increase in complexity. Application programmers can even reuse existing streaming protocols which effectively increases system robustness.Der Bedarf unsere Gesellschaft nach kostengünstiger und zuverlässiger Kommunikation wächst stetig. Während wir uns selbst immer mehr von modernen Kommunikationstechnologien abhängig machen, müssen die Ingenieure dieser Technologien sowohl den Bedarf nach schneller Einführung neuer Produkte befriedigen als auch die wachsende Komplexität der Systeme beherrschen. Gerade die Übertragung multimedialer Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominentesten Gründe dafür ist die Unzuverlässigkeit heutiger Netzwerke, wie z.B.~dem Internet. Paketverluste und schwankende Laufzeiten können die Darstellungsqualität massiv beeinträchtigen. Wie jüngste Entwicklungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualität und Robustheit der Übertragung effizient kontrollierbar, wenn Streamingprotokolle Informationen über den Inhalt der transportierten Daten ausnutzen. Existierende Ansätze, die den Inhalt von Multimediadatenströmen beschreiben, sind allerdings meist auf einzelne Kompressionsverfahren spezialisiert und verwenden berechnungsintensive Metriken. Das reduziert ihren praktischen Nutzen deutlich. Außerdem erfordert der Informationsaustausch eine enge Kooperation zwischen Applikationen und Transportschichten. Da allerdings die Schnittstellen aktueller Systemarchitekturen nicht darauf vorbereitet sind, müssen entweder die Schnittstellen erweitert oder alternative Architekturkonzepte geschaffen werden. Die Gefahr beider Varianten ist jedoch, dass sich die Komplexität eines Systems dadurch weiter erhöhen kann. Das zentrale Ziel dieser Dissertation ist es deshalb, schichtenübergreifende Koordination bei gleichzeitiger Reduzierung der Komplexität zu erreichen. Hier leistet die Arbeit zwei Beträge zum aktuellen Stand der Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung von Inhaltsattributen, wie Wichtigkeiten und Abhängigkeitsbeziehungen innerhalb eines Datenstroms. Transportschichten können dieses Wissen zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Arbeit das Noja Programmiermodell für multimediale Middleware. Noja definiert Abstraktionen zur Übertragung und Kontrolle multimedialer Ströme, die die Koordination von Streamingprotokollen mit Applikationen ermöglichen. Zum Beispiel können Programmierer geeignete Fehlersemantiken und Kommunikationstopologien auswählen und den konkreten Fehlerschutz dann zur Laufzeit verfeinern und kontrolliere

    Service-Driven Networking

    Get PDF
    This thesis presents our research on service-driven networking, which is a general design framework for service quality assurance and integrated network and service management in large scale multi-domain networks. The philosophy is to facilitate bi-party open participation among the users and the providers of network services in order to bring about better service customization and quality assurance, without sacrificing the autonomy and objectives of the individual entities. Three primary research topics are documented: service composition and adaptation, self-stabilization in uncoordinated environment, and service quality modeling. The work involves theoretical analysis, algorithm design, and simulations as evaluation methodology

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance
    corecore