104 research outputs found

    Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine

    Get PDF
    Optogenetics is an elegant approach of precisely controlling and monitoring the biological functions of a cell, group of cells, tissues, or organs with high temporal and spatial resolution by using optical system and genetic engineering technologies. The field evolved with the need to precisely control neurons and decipher neural circuity and has made great accomplishments in neuroscience. It also evolved in cardiovascular research almost a decade ago and has made considerable progress in both in vitro and in vivo animal studies. Thus, this review is written with an objective to provide information on the evolution, background, methodical advances, and potential scope of the field for cardiovascular research and medicine. We begin with a review of literatures on optogenetic proteins related to their origin, structure, types, mechanism of action, methods to improve their performance, and the delivery vehicles and methods to express such proteins on target cells and tissues for cardiovascular research. Next, we reviewed historical and recent literatures to demonstrate the scope of optogenetics for cardiovascular research and regenerative medicine and examined that cardiac optogenetics is vital in mimicking heart diseases, understanding the mechanisms of disease progression and also in introducing novel therapies to treat cardiac abnormalities, such as arrhythmias. We also reviewed optogenetics as promising tools in providing high-throughput data for cardiotoxicity screening in drug development and also in deciphering dynamic roles of signaling moieties in cell signaling. Finally, we put forth considerations on the need of scaling up of the optogenetic system, clinically relevant in vivo and in silico models, light attenuation issues, and concerns over the level, immune reactions, toxicity, and ectopic expression with opsin expression. Detailed investigations on such considerations would accelerate the translation of cardiac optogenetics from present in vitro and in vivo animal studies to clinical therapies

    Myxobacteria: Moving, Killing, Feeding, and Surviving Together

    Get PDF
    The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.00781Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which drives the movement of individual cells, is associated with the secretion of slime that forms trails at the leading edge of the swarms. It has been proposed that cellular traffic along these trails contributes to M. xanthus social behavior via stigmergic regulation. However, most of the cells travel in groups by using social motility, which is cell contact-dependent and requires a large number of individuals. Exopolysaccharides and the retraction of type IV pili at alternate poles of the cells are the engines associated with social motility. When the swarms encounter prey, the population of M. xanthus lyses and takes up nutrients from nearby cells. This cooperative and highly density-dependent feeding behavior has the advantage that the pool of hydrolytic enzymes and other secondary metabolites secreted by the entire group is shared by the community to optimize the use of the degradation products. This multicellular behavior is especially observed in the absence of nutrients. In this condition, M. xanthus swarms have the ability to organize the gliding movements of 1000s of rods, synchronizing rippling waves of oscillating cells, to form macroscopic fruiting bodies, with three subpopulations of cells showing division of labor. A small fraction of cells either develop into resistant myxospores or remain as peripheral rods, while the majority of cells die, probably to provide nutrients to allow aggregation and spore differentiation. Sporulation within multicellular fruiting bodies has the benefit of enabling survival in hostile environments, and increases germination and growth rates when cells encounter favorable conditions. Herein, we review how these social bacteria cooperate and review the main cell–cell signaling systems used for communication to maintain multicellularity.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER) and Junta de Andalucía (group BIO318)

    Real time assessment of surface interactions with a titanium passivation layer by surface plasmon resonance

    Get PDF
    Due to the high corrosion resistance and strength to density ratio titanium is widely used in industry, and also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, similarly to titanium medical devices. Our "Ti-SPR sensor" enables analysis of biomolecule interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of a titanium passivation layer exposed to acid was monitored in real time. The Ti-SPR sensor can also accurately measure the time-dependence of protein adsorption onto the titanium passivation layer at sub-nanogram per square millimeter accuracy. Besides such SPR analyses, SPR imaging (SPRI) enables real time assessment of chemical surface processes that occur simultaneously at "multiple independent spots" on the Ti-SPR sensor, such as acid corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields

    The role of membrane vesicle secretion in Stenotrophomonas maltophilia antibiotic resistance

    Get PDF

    Functional Genetic Mapping of Pheudomonas Aeruginosa from Cystic Fibrosis Lungs

    Get PDF

    Central Role of the EGF Receptor in Neurometabolic Aging

    Get PDF
    A strong connection between neuronal and metabolic health has been revealed in recent years. It appears that both normal and pathophysiological aging, as well as neurodegenerative disorders, are all profoundly influenced by this “neurometabolic” interface, that is, communication between the brain and metabolic organs. An important aspect of this “neurometabolic” axis that needs to be investigated involves an elucidation of molecular factors that knit these two functional signaling domains, neuronal and metabolic, together. This paper attempts to identify and discuss a potential keystone signaling factor in this “neurometabolic” axis, that is, the epidermal growth factor receptor (EGFR). The EGFR has been previously demonstrated to act as a signaling nexus for many ligand signaling modalities and cellular stressors, for example, radiation and oxidative radicals, linked to aging and degeneration. The EGFR is expressed in a wide variety of cells/tissues that pertain to the coordinated regulation of neurometabolic activity. EGFR signaling has been highlighted directly or indirectly in a spectrum of neurometabolic conditions, for example, metabolic syndrome, diabetes, Alzheimer's disease, cancer, and cardiorespiratory function. Understanding the positioning of the EGFR within the neurometabolic domain will enhance our appreciation of the ability of this receptor system to underpin highly complex physiological paradigms such as aging and neurodegeneration

    Virulence factors in coagulase-negative staphylococci

    Get PDF
    Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.: V.G. and N.L. acknowledge the FCT fellowship, respectively, SFRH/BD/13145/2017 and SFRH/BD/136998/2018.info:eu-repo/semantics/publishedVersio

    Expression and comparison of tropomyosin isoform actin-binding properties and their resolution within the thin-filament proteome

    Get PDF
    A thesis submitted to the University of Bedfordshire in fulfilment of the requirements for the degree of Doctor of PhilosophyTropomyosins(Tm) are a group of proteins that regulate the actin filaments in both muscle and non-muscle cells. In mammalian cells four Tm species are found: α-Tm (fast) encoded by α-Tm /TPM1 gene, β-Tm, encoded by β-Tm/ TPM2 gene, α-Tm (slow) encoded by γTm gene/ TPM3 and δ-Tm encoded by δTm / TPM4gene. Mutations in Tm are linked to many cardiac and skeletal diseases like hypertrophic cardiac myopathy (TPM1 and TPM2), familial cardiac myopathy (TPM1) and skeletal diseases like nemaline myopathy (TPM2 and TPM3) along with other sarcomere proteins. The hypothesis on which this study is based is, the isoform composition in both muscle and non-muscle cells adapts in response to disease and physiological changes. A significant part of that adaptation is changes in the thin filament protein isoforms expressed and the post translational modifications of these proteins. In this study Tpm3.12st isoform of γTm and other striated muscle tropomyosin isoforms (Tpm1 and Tpm2) and a non-muscle Tmp4 were characterised using a variety of techniques. The aim was to enhance our understanding of the role of tropomyosin interactions in regards to its efficiency of actin binding capacity as well as its effect on actin polymerisation. Human tropomyosin 3 (Tpm3.12st) was expressed in E. coli to produce recombinant protein with three N-terminal sequence variants (Met, MM and (M)ASM). The proteins were characterised for their binding affinity with actin as this isoform has not been well characterised so far. Its properties are compared with other striated muscle tropomyosin Tpm1.1st and Tpm2.2st and non-muscle Tpm4.1cy. The proteins were purified through ion exchange chromatography and the purity was checked by using SDS-PAGE and UV spectrometry. The molecular weights of the recombinant proteins produced were confirmed by mass spectrometry. Cosedimentation assays were performed for their actin binding affinity using ultracentrifugation. The variant of Tpm3.12st with AS N-terminal extension was found to have similar actin affinity to Tpm1.1st in the range of 0.1-0.8 μM (half saturation). However the variants with Met and MM N-termini bound to actin weakly with high half saturation concentration of ~ 6 μM and ~8 μM tropomyosin respectively. Measurement of actin polymerisation kinetics showed it is affected in presence of tropomyosin. From this study it is shown that tropomyosin accelerates the initiation step in actin polymerisation with varying differences within the isoforms in contrast to several previous studies. There have been very few studies of the effect of tropomyosin on actin polymerisation in the last two decades. This work shows that tropomyosin isoforms have a large and variable role in controlling actin polymerisation and understanding tropomyosin function will need further investigation in this area. This study also developed an ELISA screening method using monoclonal antibodies for identification and quantification of Tpm3.12st which was tested against all the four tropomyosin isoforms. None of the twelve antibodies studied showed reactivity only with Tpm3.12st. From the data analysed it is deduced the amino acid residues in the region of 24-43 shows the prospect of designing a monoclonal antibody specific to Tpm3.12st isoform. Accurate quantification of tropomyosin isoforms is key to understanding their function and the effects of modulation of isoform composition in health and disease. A reverse phase liquid chromatography method was developed which is compatible with the analysis of the thin filament proteome using top-down mass spectrometry. Reverse phase liquid chromatography (RPLC) is one of the most popular methods used in mass spectrometry analysis where proteins are separated based on their hydrophobicity. The RPLC method developed in this study gives an efficient separation of major thin filament proteins along with small soluble proteins that is compatible to use for top down mass spectrometry for identification and quantification of proteins, PTMs and isoform composition. With a minimum amount of 2 mg of tissue using chicken and mouse heart and skeletal muscle samples a buffer system was optimized to extract thin filament proteins. With the optimized RPLC method actin, tropomyosin and troponin complex subunits (TnC, TnI and TnI) were successfully separated and the proteins were identified using SDS-page by comparison with the previous research results. This novel method of extraction and the optimised RPLC method will provide a “bird’s eye view” of thin filament proteome providing information of PTMs of all the proteins together within one single extraction, reducing the time for analysis and the sample size. This has the potential to give insight into tissue, muscle and heart adaptations that could act as a prognostic indicator
    corecore