4,690 research outputs found

    Combining hardware and software instrumentation to classify program executions

    Get PDF
    Several research efforts have studied ways to infer properties of software systems from program spectra gathered from the running systems, usually with software-level instrumentation. While these efforts appear to produce accurate classifications, detailed understanding of their costs and potential cost-benefit tradeoffs is lacking. In this work we present a hybrid instrumentation approach which uses hardware performance counters to gather program spectra at very low cost. This underlying data is further augmented with data captured by minimal amounts of software-level instrumentation. We also evaluate this hybrid approach by comparing it to other existing approaches. We conclude that these hybrid spectra can reliably distinguish failed executions from successful executions at a fraction of the runtime overhead cost of using software-based execution data

    S-Store: Streaming Meets Transaction Processing

    Get PDF
    Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system. We chose to build S-Store as an extension of H-Store, an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make use of the transaction processing facilities that H-Store already supports, and we can concentrate on the additional implementation features that are needed to support streaming. Similar implementations could be done using other main-memory OLTP platforms. We show that we can actually achieve higher throughput for streaming workloads in S-Store than an equivalent deployment in H-Store alone. We also show how this can be achieved within H-Store with the addition of a modest amount of new functionality. Furthermore, we compare S-Store to two state-of-the-art streaming systems, Spark Streaming and Storm, and show how S-Store matches and sometimes exceeds their performance while providing stronger transactional guarantees

    Run Time Approximation of Non-blocking Service Rates for Streaming Systems

    Full text link
    Stream processing is a compute paradigm that promises safe and efficient parallelism. Modern big-data problems are often well suited for stream processing's throughput-oriented nature. Realization of efficient stream processing requires monitoring and optimization of multiple communications links. Most techniques to optimize these links use queueing network models or network flow models, which require some idea of the actual execution rate of each independent compute kernel within the system. What we want to know is how fast can each kernel process data independent of other communicating kernels. This is known as the "service rate" of the kernel within the queueing literature. Current approaches to divining service rates are static. Modern workloads, however, are often dynamic. Shared cloud systems also present applications with highly dynamic execution environments (multiple users, hardware migration, etc.). It is therefore desirable to continuously re-tune an application during run time (online) in response to changing conditions. Our approach enables online service rate monitoring under most conditions, obviating the need for reliance on steady state predictions for what are probably non-steady state phenomena. First, some of the difficulties associated with online service rate determination are examined. Second, the algorithm to approximate the online non-blocking service rate is described. Lastly, the algorithm is implemented within the open source RaftLib framework for validation using a simple microbenchmark as well as two full streaming applications.Comment: technical repor

    ALOJA: A benchmarking and predictive platform for big data performance analysis

    Get PDF
    The main goals of the ALOJA research project from BSC-MSR, are to explore and automate the characterization of cost-effectivenessof Big Data deployments. The development of the project over its first year, has resulted in a open source benchmarking platform, an online public repository of results with over 42,000 Hadoop job runs, and web-based analytic tools to gather insights about system's cost-performance1. This article describes the evolution of the project's focus and research lines from over a year of continuously benchmarking Hadoop under dif- ferent configuration and deployments options, presents results, and dis cusses the motivation both technical and market-based of such changes. During this time, ALOJA's target has evolved from a previous low-level profiling of Hadoop runtime, passing through extensive benchmarking and evaluation of a large body of results via aggregation, to currently leveraging Predictive Analytics (PA) techniques. Modeling benchmark executions allow us to estimate the results of new or untested configu- rations or hardware set-ups automatically, by learning techniques from past observations saving in benchmarking time and costs.This work is partially supported the BSC-Microsoft Research Centre, the Span- ish Ministry of Education (TIN2012-34557), the MINECO Severo Ochoa Research program (SEV-2011-0067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    An input centric paradigm for program dynamic optimizations and lifetime evolvement

    Get PDF
    Accurately predicting program behaviors (e.g., memory locality, method calling frequency) is fundamental for program optimizations and runtime adaptations. Despite decades of remarkable progress, prior studies have not systematically exploited the use of program inputs, a deciding factor of program behaviors, to help in program dynamic optimizations. Triggered by the strong and predictive correlations between program inputs and program behaviors that recent studies have uncovered, the dissertation work aims to bring program inputs into the focus of program behavior analysis and program dynamic optimization, cultivating a new paradigm named input-centric program behavior analysis and dynamic optimization.;The new optimization paradigm consists of three components, forming a three-layer pyramid. at the base is program input characterization, a component for resolving the complexity in program raw inputs and extracting important features. In the middle is input-behavior modeling, a component for recognizing and modeling the correlations between characterized input features and program behaviors. These two components constitute input-centric program behavior analysis, which (ideally) is able to predict the large-scope behaviors of a program\u27s execution as soon as the execution starts. The top layer is input-centric adaptation, which capitalizes on the novel opportunities created by the first two components to facilitate proactive adaptation for program optimizations.;This dissertation aims to develop this paradigm in two stages. In the first stage, we concentrate on exploring the implications of program inputs for program behaviors and dynamic optimization. We construct the basic input-centric optimization framework based on of line training to realize the basic functionalities of the three major components of the paradigm. For the second stage, we focus on making the paradigm practical by addressing multi-facet issues in handling input complexities, transparent training data collection, predictive model evolvement across production runs. The techniques proposed in this stage together cultivate a lifelong continuous optimization scheme with cross-input adaptivity.;Fundamentally the new optimization paradigm provides a brand new solution for program dynamic optimization. The techniques proposed in the dissertation together resolve the adaptivity-proactivity dilemma that has been limiting the effectiveness of existing optimization techniques. its benefits are demonstrated through proactive dynamic optimizations in Jikes RVM and version selection using IBM XL C Compiler, yielding significant performance improvement on a set of Java and C/C++ programs. It may open new opportunities for a broad range of runtime optimizations and adaptations. The evaluation results on both Java and C/C++ applications demonstrate the new paradigm is promising in advancing the current state of program optimizations
    • …
    corecore