436 research outputs found

    On triangular norms and uninorms definable in ŁΠ12

    Get PDF
    AbstractIn this paper, we investigate the definability of classes of t-norms and uninorms in the logic ŁΠ12. In particular we provide a complete characterization of definable continuous t-norms, weak nilpotent minimum t-norms, conjunctive uninorms continuous on [0,1), and idempotent conjunctive uninorms, and give both positive and negative results concerning definability of left-continuous t-norms (and uninorms). We show that the class of definable uninorms is closed under construction methods as annihilation, rotation and rotation–annihilation. Moreover, we prove that every logic based on a definable uninorm is in PSPACE, and that any finitely axiomatizable logic based on a class of definable uninorms is decidable. Finally we show that the Uninorm Mingle Logic (UML) and the Basic Uninorm Logic (BUL) are finitely strongly standard complete w.r.t. the related class of definable left-continuous conjunctive uninorms

    Solution to an open problem: A characterization of conditionally cancellative t-subnorms

    Get PDF
    In this work we solve an open problem of U. Höhle (Klement et al. Fuzzy Sets Syst 145:471-479, 2004, Problem 11). We show that the solution gives a characterization of all conditionally cancellative t-subnorms. Further, we give an equivalence condition under which a conditionally cancellative t-subnorm has 1 as its neutral element and hence show that conditionally cancellative t-subnorms whose natural negations are strong are, in fact, t-norms

    Fuzzy entropy from weak fuzzy subsethood measures

    Full text link
    In this paper, we propose a new construction method for fuzzy and weak fuzzy subsethood measures based on the aggregation of implication operators. We study the desired properties of the implication operators in order to construct these measures. We also show the relationship between fuzzy entropy and weak fuzzy subsethood measures constructed by our method

    Homomorphisms on the monoid of fuzzy implications and the iterative functional equation I(x,I(x,y))=I(x,y)

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the ⊛⊛-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ⊛⊛-composition does not always generate new fuzzy implications. In this work, we study the generative power of the ⊛⊛-composition. Towards this end, we study some specific functional equations all of which lead to the solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y) involving fuzzy implications which has been studied extensively for different families of fuzzy implications in this very journal, see [Information Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take an algebraic approach towards solving these functional equations. Viewing the ⊛⊛-composition as a binary operation ⊛⊛ on the set II of all fuzzy implications one obtains a monoid structure (I,⊛)(I,⊛) on the set II. From the Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations. We determine the complete set KK of fuzzy implications w.r.t. which the right translations also become semigroup homomorphisms on the monoid (I,⊛I,⊛) and show that KK not only answers our questions regarding the generative power of the ⊛⊛-composition but also contains many as yet unknown solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y)

    Rotation-invariant t-norms

    Get PDF

    Fitting aggregation operators to data

    Full text link
    Theoretical advances in modelling aggregation of information produced a wide range of aggregation operators, applicable to almost every practical problem. The most important classes of aggregation operators include triangular norms, uninorms, generalised means and OWA operators.With such a variety, an important practical problem has emerged: how to fit the parameters/ weights of these families of aggregation operators to observed data? How to estimate quantitatively whether a given class of operators is suitable as a model in a given practical setting? Aggregation operators are rather special classes of functions, and thus they require specialised regression techniques, which would enforce important theoretical properties, like commutativity or associativity. My presentation will address this issue in detail, and will discuss various regression methods applicable specifically to t-norms, uninorms and generalised means. I will also demonstrate software implementing these regression techniques, which would allow practitioners to paste their data and obtain optimal parameters of the chosen family of operators.<br /

    Some New Implication Operations Emerging From Fuzzy Logic

    Get PDF
    We choose, from fuzzy set theory, t-norms, t-conorms and fuzzy compliments which forms dual triplet that is (i,u,c) that satisfy the DeMorgan's law, these dual triplet are used in the construction of fuzzy implications in fuzzy logic. In this work introduction of fuzzy implication is given, which included definition of fuzzy implications and their properties and also distinct classes of fuzzy implication (S, R and QL-implications). Further also described previous work on fuzzy implication and supporting literature of construction of fuzzy implication are given. Finally main contribution of work is to design new fuzzy implication and their graphical representations

    A Deep Study of Fuzzy Implications

    Get PDF
    This thesis contributes a deep study on the extensions of the IMPLY operator in classical binary logic to fuzzy logic, which are called fuzzy implications. After the introduction in Chapter 1 and basic notations about the fuzzy logic operators In Chapter 2 we first characterize In Chapter 3 S- and R- implications and then extensively investigate under which conditions QL-implications satisfy the thirteen fuzzy implication axioms. In Chapter 4 we develop the complete interrelationships between the eight supplementary axioms FI6-FI13 for fuzzy implications satisfying the five basic axioms FI1-FI15. We prove all the dependencies between the eight fuzzy implication axioms, and provide for each independent case a counter-example. The counter-examples provided in this chapter can be used in the applications that need different fuzzy implications satisfying different fuzzy implication axioms. In Chapter 5 we study proper S-, R- and QL-implications for an iterative boolean-like scheme of reasoning from classical binary logic in the frame of fuzzy logic. Namely, repeating antecedents nn times, the reasoning result will remain the same. To determine the proper S-, R- and QL-implications we get a full solution of the functional equation I(x,y)=I(x,I(x,y))I(x,y)=I(x,I(x,y)), for all xx, y[0,1]y\in[0,1]. In Chapter 6 we study for the most important t-norms, t-conorms and S-implications their robustness against different perturbations in a fuzzy rule-based system. We define and compare for these fuzzy logical operators the robustness measures against bounded unknown and uniform distributed perturbations respectively. In Chapter 7 we use a fuzzy implication II to define a fuzzy II-adjunction in F(Rn)\mathcal{F}(\mathbb{R}^{n}). And then we study the conditions under which a fuzzy dilation which is defined from a conjunction C\mathcal{C} on the unit interval and a fuzzy erosion which is defined from a fuzzy implication II^{'} to form a fuzzy II-adjunction. These conditions are essential in order that the fuzzification of the morphological operations of dilation, erosion, opening and closing obey similar properties as their algebraic counterparts. We find out that the adjointness between the conjunction C\mathcal{C} on the unit interval and the implication II or the implication II^{'} play important roles in such conditions

    Distributivity of strong implications over conjunctive and disjunctive uninorms

    Get PDF
    summary:This paper deals with implications defined from disjunctive uninorms UU by the expression I(x,y)=U(N(x),y)I(x,y)=U(N(x),y) where NN is a strong negation. The main goal is to solve the functional equation derived from the distributivity condition of these implications over conjunctive and disjunctive uninorms. Special cases are considered when the conjunctive and disjunctive uninorm are a tt-norm or a tt-conorm respectively. The obtained results show a lot of new solutions generalyzing those obtained in previous works when the implications are derived from tt-conorms

    Bandler-Kohout Subproduct with Yager’s Families of Fuzzy Implications: A Comprehensive Study

    Get PDF
    Approximate reasoning schemes involving fuzzy sets are one of the best known applications of fuzzy logic in the wider sense. Fuzzy Inference Systems (FIS) or Fuzzy Inference Mechanisms (FIM) have many degrees of freedom, viz., the underlying fuzzy partition of the input and output spaces, the fuzzy logic operations employed, the fuzzification and defuzzification mechanism used, etc. This freedom gives rise to a variety of FIS with differing capabilities
    corecore