17,264 research outputs found

    A Continuity Theorem for Stinespring's Dilation

    Get PDF
    We show a continuity theorem for Stinespring's dilation: two completely positive maps between arbitrary C*-algebras are close in cb-norm iff we can find corresponding dilations that are close in operator norm. The proof establishes the equivalence of the cb-norm distance and the Bures distance for completely positive maps. We briefly discuss applications to quantum information theory.Comment: 18 pages, no figure

    R\'enyi Divergence and Kullback-Leibler Divergence

    Full text link
    R\'enyi divergence is related to R\'enyi entropy much like Kullback-Leibler divergence is related to Shannon's entropy, and comes up in many settings. It was introduced by R\'enyi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the R\'enyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of R\'enyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of σ\sigma-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.Comment: To appear in IEEE Transactions on Information Theor

    Continuity of the Maximum-Entropy Inference

    Full text link
    We study the inverse problem of inferring the state of a finite-level quantum system from expected values of a fixed set of observables, by maximizing a continuous ranking function. We have proved earlier that the maximum-entropy inference can be a discontinuous map from the convex set of expected values to the convex set of states because the image contains states of reduced support, while this map restricts to a smooth parametrization of a Gibbsian family of fully supported states. Here we prove for arbitrary ranking functions that the inference is continuous up to boundary points. This follows from a continuity condition in terms of the openness of the restricted linear map from states to their expected values. The openness condition shows also that ranking functions with a discontinuous inference are typical. Moreover it shows that the inference is continuous in the restriction to any polytope which implies that a discontinuity belongs to the quantum domain of non-commutative observables and that a geodesic closure of a Gibbsian family equals the set of maximum-entropy states. We discuss eight descriptions of the set of maximum-entropy states with proofs of accuracy and an analysis of deviations.Comment: 34 pages, 1 figur

    An Algebraic Characterization of Vacuum States in Minkowski Space. III. Reflection Maps

    Full text link
    Employing the algebraic framework of local quantum physics, vacuum states in Minkowski space are distinguished by a property of geometric modular action. This property allows one to construct from any locally generated net of observables and corresponding state a continuous unitary representation of the proper Poincare group which acts covariantly on the net and leaves the state invariant. The present results and methods substantially improve upon previous work. In particular, the continuity properties of the representation are shown to be a consequence of the net structure, and surmised cohomological problems in the construction of the representation are resolved by demonstrating that, for the Poincare group, continuous reflection maps are restrictions of continuous homomorphisms.Comment: 20 pages; change of title, reference added; version as to appear in Commun. Math. Phy

    Ergodic Classical-Quantum Channels: Structure and Coding Theorems

    Full text link
    We consider ergodic causal classical-quantum channels (cq-channels) which additionally have a decaying input memory. In the first part we develop some structural properties of ergodic cq-channels and provide equivalent conditions for ergodicity. In the second part we prove the coding theorem with weak converse for causal ergodic cq-channels with decaying input memory. Our proof is based on the possibility to introduce joint input-output state for the cq-channels and an application of the Shannon-McMillan theorem for ergodic quantum states. In the last part of the paper it is shown how this result implies coding theorem for the classical capacity of a class of causal ergodic quantum channels.Comment: 19 pages, no figures. Final versio
    corecore