2,359 research outputs found

    Meaningful aggregation functions mapping ordinal scales into an ordinal scale: a state of the art

    Get PDF
    We present an overview of the meaningful aggregation functions mapping ordinal scales into an ordinal scale. Three main classes are discussed, namely order invariant functions, comparison meaningful functions on a single ordinal scale, and comparison meaningful functions on independent ordinal scales. It appears that the most prominent meaningful aggregation functions are lattice polynomial functions, that is, functions built only on projections and minimum and maximum operations

    Representation of maxitive measures: an overview

    Full text link
    Idempotent integration is an analogue of Lebesgue integration where σ\sigma-maxitive measures replace σ\sigma-additive measures. In addition to reviewing and unifying several Radon--Nikodym like theorems proven in the literature for the idempotent integral, we also prove new results of the same kind.Comment: 40 page

    First-order Nilpotent Minimum Logics: first steps

    Full text link
    Following the lines of the analysis done in [BPZ07, BCF07] for first-order G\"odel logics, we present an analogous investigation for Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra. We establish a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.Comment: In this version of the paper the presentation has been improved. The introduction section has been rewritten, and many modifications have been done to improve the readability; moreover, numerous references have been added. Concerning the technical side, some proofs has been shortened or made more clear, but the mathematical content is substantially the same of the previous versio

    On the semantics of fuzzy logic

    Get PDF
    AbstractThis paper presents a formal characterization of the major concepts and constructs of fuzzy logic in terms of notions of distance, closeness, and similarity between pairs of possible worlds. The formalism is a direct extension (by recognition of multiple degrees of accessibility, conceivability, or reachability) of the najor modal logic concepts of possible and necessary truth.Given a function that maps pairs of possible worlds into a number between 0 and 1, generalizing the conventional concept of an equivalence relation, the major constructs of fuzzy logic (conditional and unconditioned possibility distributions) are defined in terms of this similarity relation using familiar concepts from the mathematical theory of metric spaces. This interpretation is different in nature and character from the typical, chance-oriented, meanings associated with probabilistic concepts, which are grounded on the mathematical notion of set measure. The similarity structure defines a topological notion of continuity in the space of possible worlds (and in that of its subsets, i.e., propositions) that allows a form of logical “extrapolation” between possible worlds.This logical extrapolation operation corresponds to the major deductive rule of fuzzy logic — the compositional rule of inference or generalized modus ponens of Zadeh — an inferential operation that generalizes its classical counterpart by virtue of its ability to be utilized when propositions representing available evidence match only approximately the antecedents of conditional propositions. The relations between the similarity-based interpretation of the role of conditional possibility distributions and the approximate inferential procedures of Baldwin are also discussed.A straightforward extension of the theory to the case where the similarity scale is symbolic rather than numeric is described. The problem of generating similarity functions from a given set of possibility distributions, with the latter interpreted as defining a number of (graded) discernibility relations and the former as the result of combining them into a joint measure of distinguishability between possible worlds, is briefly discussed

    Facets and Levels of Mathematical Abstraction

    Get PDF
    International audienceMathematical abstraction is the process of considering and manipulating operations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of performing mathematical abstraction. The term "abstraction" does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined ; in particular, the process does not amount only to logical subsumption. I will consider comparatively how philosophers consider abstraction and how mathematicians perform it, with the aim to bring to light the fundamental thinking processes at play, and to illustrate by significant examples how much intricate and multi-leveled may be the combination of typical mathematical techniques which include axiomatic method, invarianceprinciples, equivalence relations and functional correspondences.L'abstraction mathématique consiste en la considération et la manipulation d'opérations, règles et concepts indépendamment du contenu dont les nantissent des applications particulières et du rapport qu'ils peuvent avoir avec les phénomènes et les circonstances du monde réel. L'abstraction mathématique emprunte diverses voies. Le terme " abstraction " ne désigne pasune procédure unique, mais un processus général où s'entrecroisent divers procédés employés successivement ou simultanément. En particulier, l'abstraction mathématique ne se réduit pas à la subsomption logique. Je vais étudier comparativement en quels termes les philosophes expliquent l'abstraction et par quels moyens les mathématiciens la mettent en oeuvre. Je voudrais parlà mettre en lumière les principaux processus de pensée en jeu et illustrer par des exemples divers niveaux d'intrication de techniques mathématiques récurrentes, qui incluent notamment la méthode axiomatique, les principes d'invariance, les relations d'équivalence et les correspondances fonctionnelles
    corecore