29 research outputs found

    Counting derangements with signed right-to-left minima and excedances

    Full text link
    Recently Alexandersson and Getachew proved some multivariate generalizations of a formula for enumerating signed excedances in derangements. In this paper we first relate their work to a recent continued fraction for permutations and confirm some of their observations. Our second main result is two refinements of their multivariate identities, which clearly explain the meaning of each term in their main formulas. We also explore some similar formulas for permutations of type B.Comment: Advances in Applied Mathematics 152, 10259

    Enumerative combinatorics, continued fractions and total positivity

    Get PDF
    Determining whether a given number is positive is a fundamental question in mathematics. This can sometimes be answered by showing that the number counts some collection of objects, and hence, must be positive. The work done in this dissertation is in the field of enumerative combinatorics, the branch of mathematics that deals with exact counting. We will consider several problems at the interface between enumerative combinatorics, continued fractions and total positivity. In our first contribution, we exhibit a lower-triangular matrix of polynomials in six indeterminates that appears empirically to be coefficientwise totally positive, and which includes as a special case the Eulerian triangle. This generalises Brenti’s conjecture from 1996. We prove the coefficientwise total positivity of a three-variable case which includes the reversed Stirling subset triangle. Our next contribution is the study of two sequences whose Stieltjes-type continued fraction coefficients grow quadratically; we study the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations, a class of permutations of 2n, with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings. After this, we interpret the Foata–Zeilberger bijection in terms of Laguerre digraphs, which enables us to count cycles in permutations. Using this interpretation, we obtain Jacobi-type continued fractions for multivariate polynomials enumerating permutations, and also Thron-type and Stieltjes-type continued fractions for multivariate polynomials enumerating D-permutations, in both cases including the counting of cycles. This enables us to prove some conjectured continued fractions due to Sokal–Zeng from 2022, and Randrianarivony–Zeng from 1996. Finally, we introduce the higher-order Stirling cycle and subset numbers; these generalise the Stirling cycle and subset numbers, respectively. We introduce some conjectures which involve different total-positivity questions for these triangular arrays and then answer some of them

    Permutations, moments, measures

    Get PDF
    We present a continued fraction with 13 permutation statistics, several of them new, connecting a great number of combinatorial structures to a wide variety of moment sequences and their measures from classical and noncommutative probability. The Hankel determinants of these moment sequences are a product of (p,q)-factorials, unifying several instances from the literature. The corresponding measures capture as special cases several classical laws, such as the Gaussian, Poisson, and exponential, along with further specializations of the orthogonalizing measures in the q-Askey scheme and several known noncommutative central limits. Statistics in our continued fraction generalize naturally to signed and colored permutations, and to the k-arrangements introduced here, permutations with k-colored fixed points
    corecore