30 research outputs found

    Continued Fractions

    Full text link

    Ramanujan and Extensions and Contractions of Continued Fractions

    Full text link
    If a continued fraction Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n} is known to converge but its limit is not easy to determine, it may be easier to use an extension of Kn=1∞an/bnK_{n=1}^{\infty}a_{n}/b_{n} to find the limit. By an extension of Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n} we mean a continued fraction Kn=1∞cn/dnK_{n=1}^{\infty} c_{n}/d_{n} whose odd or even part is Kn=1∞an/bnK_{n=1}^{\infty} a_{n}/b_{n}. One can then possibly find the limit in one of three ways: (i) Prove the extension converges and find its limit; (ii) Prove the extension converges and find the limit of the other contraction (for example, the odd part, if Kn=1∞an/bnK_{n=1}^{\infty}a_{n}/b_{n} is the even part); (ii) Find the limit of the other contraction and show that the odd and even parts of the extension tend to the same limit. We apply these ideas to derive new proofs of certain continued fraction identities of Ramanujan and to prove a generalization of an identity involving the Rogers-Ramanujan continued fraction, which was conjectured by Blecksmith and Brillhart.Comment: 16 page

    A Theorem on Divergence in the General Sense for Continued Fractions

    Get PDF
    If the odd and even parts of a continued fraction converge to different values, the continued fraction may or may not converge in the general sense. We prove a theorem which settles the question of general convergence for a wide class of such continued fractions. We apply this theorem to two general classes of q continued fraction to show, that if G(q) is one of these continued fractions and |q| \u3e 1, then either G(q) converges or does not converge in the general sense. We also show that if the odd and even parts of the continued fraction K∞n=1an/1 converge to different values, then limn→∞ |an| = ∞

    A Theorem on Divergence in the General Sense for Continued Fractions

    Get PDF
    If the odd and even parts of a continued fraction converge to different values, the continued fraction may or may not converge in the general sense. We prove a theorem which settles the question of general convergence for a wide class of such continued fractions. We apply this theorem to two general classes of q continued fraction to show, that if G(q) is one of these continued fractions and |q| \u3e 1, then either G(q) converges or does not converge in the general sense. We also show that if the odd and even parts of the continued fraction K∞n=1an/1 converge to different values, then limn→∞ |an| = ∞

    Polynomial Continued Fractions

    Get PDF
    Continued fractions whose elements are polynomial sequences have been carefully studied mostly in the cases where the degree of the numerator polynomial is less than or equal to two and the degree of the denominator polynomial is less than or equal to one. Here we study cases of higher degree for both numerator and denominator polynomials, with particular attention given to cases in which the degrees are equal. We extend work of Ramanujan on continued fractions with rational limits and also consider cases where the limits are irrational

    Ramanujan and Extensions and Contractions of Continued Fractions

    Get PDF
    If a continued fraction K∞n=1an/bn is known to converge but its limit is not easy to determine, it may be easier to use an extension of K∞n=1an/bn to find the limit. By an extension of K∞n=1an/bn we mean a continued fraction K∞n=1cn/dn whose odd or even part is K∞n=1an/bn. One can then possibly find the limit in one of three ways: (i) Prove the extension converges and find its limit; (ii) Prove the extension converges and find the limit of the other contraction (for example, the odd part, if K∞n=1an/bn is the even part); (ii) Find the limit of the other contraction and show that the odd and even parts of the extension tend to the same limit. We apply these ideas to derive new proofs of certain continued fraction identities of Ramanujan and to prove a generalization of an identity involving the Rogers-Ramanujan continued fraction, which was conjectured by Blecksmith and Brillhart
    corecore