100 research outputs found

    A geometric approach to phase response curves and its numerical computation through the parameterization method

    Get PDF
    The final publication is available at link.springer.comThe phase response curve (PRC) is a tool used in neuroscience that measures the phase shift experienced by an oscillator due to a perturbation applied at different phases of the limit cycle. In this paper, we present a new approach to PRCs based on the parameterization method. The underlying idea relies on the construction of a periodic system whose corresponding stroboscopic map has an invariant curve. We demonstrate the relationship between the internal dynamics of this invariant curve and the PRC, which yields a method to numerically compute the PRCs. Moreover, we link the existence properties of this invariant curve as the amplitude of the perturbation is increased with changes in the PRC waveform and with the geometry of isochrons. The invariant curve and its dynamics will be computed by means of the parameterization method consisting of solving an invariance equation. We show that the method to compute the PRC can be extended beyond the breakdown of the curve by means of introducing a modified invariance equation. The method also computes the amplitude response functions (ARCs) which provide information on the displacement away from the oscillator due to the effects of the perturbation. Finally, we apply the method to several classical models in neuroscience to illustrate how the results herein extend the framework of computation and interpretation of the PRC and ARC for perturbations of large amplitude and not necessarily pulsatile.Peer ReviewedPostprint (author's final draft

    Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids

    Full text link
    Numerical continuation methods for deterministic dynamical systems have been one of the most successful tools in applied dynamical systems theory. Continuation techniques have been employed in all branches of the natural sciences as well as in engineering to analyze ordinary, partial and delay differential equations. Here we show that the deterministic continuation algorithm for equilibrium points can be extended to track information about metastable equilibrium points of stochastic differential equations (SDEs). We stress that we do not develop a new technical tool but that we combine results and methods from probability theory, dynamical systems, numerical analysis, optimization and control theory into an algorithm that augments classical equilibrium continuation methods. In particular, we use ellipsoids defining regions of high concentration of sample paths. It is shown that these ellipsoids and the distances between them can be efficiently calculated using iterative methods that take advantage of the numerical continuation framework. We apply our method to a bistable neural competition model and a classical predator-prey system. Furthermore, we show how global assumptions on the flow can be incorporated - if they are available - by relating numerical continuation, Kramers' formula and Rayleigh iteration.Comment: 29 pages, 7 figures [Fig.7 reduced in quality due to arXiv size restrictions]; v2 - added Section 9 on Kramers' formula, additional computations, corrected typos, improved explanation

    Global Isochrons and Phase Sensitivity of Bursting Neurons

    Full text link
    Phase sensitivity analysis is a powerful method for studying (asymptotically periodic) bursting neuron models. One popular way of capturing phase sensitivity is through the computation of isochrons---subsets of the state space that each converge to the same trajectory on the limit cycle. However, the computation of isochrons is notoriously difficult, especially for bursting neuron models. In [W. E. Sherwood and J. Guckenheimer, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 659--703], the phase sensitivity of the bursting Hindmarsh--Rose model is studied through the use of singular perturbation theory: cross sections of the isochrons of the full system are approximated by those of fast subsystems. In this paper, we complement the previous study, providing a detailed phase sensitivity analysis of the full (three-dimensional) system, including computations of the full (two-dimensional) isochrons. To our knowledge, this is the first such computation for a bursting neuron model. This was made possible thanks to the numerical method recently proposed in [A. Mauroy and I. Mezić, Chaos, 22 (2012), 033112]---relying on the spectral properties of the so-called Koopman operator---which is complemented with the use of adaptive quadtree and octree grids. The main result of the paper is to highlight the existence of a region of high phase sensitivity called the almost phaseless set and to completely characterize its geometry. In particular, our study reveals the existence of a subset of the almost phaseless set that is not predicted by singular perturbation theory (i.e., by the isochrons of fast subsystems). We also discuss how the almost phaseless set is related to empirically observed phenomena such as addition/deletion of spikes and to extrema of the phase response of the system. Finally, through the same numerical method, we show that an elliptic bursting model is characterized by a very high phase sensitivity and other remarkable properties

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms
    • …
    corecore